Lock和synchronized比较详解(转)
从Java5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。
也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西
以下是本文目录大纲:
一.synchronized的缺陷
二.java.util.concurrent.locks包下常用的类
三.锁的相关概念介绍
若有不正之处请多多谅解,并欢迎批评指正。
请尊重作者劳动成果,转载请标明原文链接:
http://www.cnblogs.com/dolphin0520/p/3923167.html
一.synchronized的缺陷
synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?
在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:
1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
2)线程执行发生异常,此时JVM会让线程自动释放锁。
那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。
因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。
再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。
但是采用synchronized关键字来实现同步的话,就会导致一个问题:
如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。
另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。
总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:
1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
二.java.util.concurrent.locks包下常用的类
下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。
1.Lock
首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:
| 1 2 3 4 5 6 7 8 | publicinterfaceLock {    voidlock();    voidlockInterruptibly() throwsInterruptedException;    booleantryLock();    booleantryLock(longtime, TimeUnit unit) throwsInterruptedException;    voidunlock();    Condition newCondition();} | 
下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?
首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。
由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:
| 1 2 3 4 5 6 7 8 9 | Lock lock = ...;lock.lock();try{    //处理任务}catch(Exception ex){    }finally{    lock.unlock();   //释放锁} | 
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
所以,一般情况下通过tryLock来获取锁时是这样使用的:
| 1 2 3 4 5 6 7 8 9 10 11 12 | Lock lock = ...;if(lock.tryLock()) {     try{         //处理任务     }catch(Exception ex){             }finally{         lock.unlock();   //释放锁     } }else{    //如果不能获取锁,则直接做其他事情} | 
lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。
因此lockInterruptibly()一般的使用形式如下:
| 1 2 3 4 5 6 7 8 9 | publicvoidmethod() throwsInterruptedException {    lock.lockInterruptibly();    try{       //.....    }    finally{        lock.unlock();    }  } | 
注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。
因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。
而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
2.ReentrantLock
ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。
例子1,lock()的正确使用方法
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | publicclassTest {    privateArrayList<Integer> arrayList = newArrayList<Integer>();    publicstaticvoidmain(String[] args)  {        finalTest test = newTest();                newThread(){            publicvoidrun() {                test.insert(Thread.currentThread());            };        }.start();                newThread(){            publicvoidrun() {                test.insert(Thread.currentThread());            };        }.start();    }          publicvoidinsert(Thread thread) {        Lock lock = newReentrantLock();    //注意这个地方        lock.lock();        try{            System.out.println(thread.getName()+"得到了锁");            for(inti=0;i<5;i++) {                arrayList.add(i);            }        } catch(Exception e) {            // TODO: handle exception        }finally{            System.out.println(thread.getName()+"释放了锁");            lock.unlock();        }    }} | 
各位朋友先想一下这段代码的输出结果是什么?
Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁
也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。
知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | publicclassTest {    privateArrayList<Integer> arrayList = newArrayList<Integer>();    privateLock lock = newReentrantLock();    //注意这个地方    publicstaticvoidmain(String[] args)  {        finalTest test = newTest();                newThread(){            publicvoidrun() {                test.insert(Thread.currentThread());            };        }.start();                newThread(){            publicvoidrun() {                test.insert(Thread.currentThread());            };        }.start();    }          publicvoidinsert(Thread thread) {        lock.lock();        try{            System.out.println(thread.getName()+"得到了锁");            for(inti=0;i<5;i++) {                arrayList.add(i);            }        } catch(Exception e) {            // TODO: handle exception        }finally{            System.out.println(thread.getName()+"释放了锁");            lock.unlock();        }    }} | 
这样就是正确地使用Lock的方法了。
例子2,tryLock()的使用方法
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | publicclassTest {    privateArrayList<Integer> arrayList = newArrayList<Integer>();    privateLock lock = newReentrantLock();    //注意这个地方    publicstaticvoidmain(String[] args)  {        finalTest test = newTest();                newThread(){            publicvoidrun() {                test.insert(Thread.currentThread());            };        }.start();                newThread(){            publicvoidrun() {                test.insert(Thread.currentThread());            };        }.start();    }          publicvoidinsert(Thread thread) {        if(lock.tryLock()) {            try{                System.out.println(thread.getName()+"得到了锁");                for(inti=0;i<5;i++) {                    arrayList.add(i);                }            } catch(Exception e) {                // TODO: handle exception            }finally{                System.out.println(thread.getName()+"释放了锁");                lock.unlock();            }        } else{            System.out.println(thread.getName()+"获取锁失败");        }    }} | 
输出结果:
Thread-0得到了锁
Thread-1获取锁失败
Thread-0释放了锁
例子3,lockInterruptibly()响应中断的使用方法:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | publicclassTest {    privateLock lock = newReentrantLock();       publicstaticvoidmain(String[] args)  {        Test test = newTest();        MyThread thread1 = newMyThread(test);        MyThread thread2 = newMyThread(test);        thread1.start();        thread2.start();                try{            Thread.sleep(2000);        } catch(InterruptedException e) {            e.printStackTrace();        }        thread2.interrupt();    }          publicvoidinsert(Thread thread) throwsInterruptedException{        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出        try{              System.out.println(thread.getName()+"得到了锁");            longstartTime = System.currentTimeMillis();            for(    ;     ;) {                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)                    break;                //插入数据            }        }        finally{            System.out.println(Thread.currentThread().getName()+"执行finally");            lock.unlock();            System.out.println(thread.getName()+"释放了锁");        }      }}classMyThread extendsThread {    privateTest test = null;    publicMyThread(Test test) {        this.test = test;    }    @Override    publicvoidrun() {                try{            test.insert(Thread.currentThread());        } catch(InterruptedException e) {            System.out.println(Thread.currentThread().getName()+"被中断");        }    }} | 
运行之后,发现thread2能够被正确中断。
3.ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | publicinterfaceReadWriteLock {    /**     * Returns the lock used for reading.     *     * @return the lock used for reading.     */    Lock readLock();    /**     * Returns the lock used for writing.     *     * @return the lock used for writing.     */    Lock writeLock();} | 
一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
4.ReentrantReadWriteLock
ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。
下面通过几个例子来看一下ReentrantReadWriteLock具体用法。
假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | publicclassTest {    privateReentrantReadWriteLock rwl = newReentrantReadWriteLock();        publicstaticvoidmain(String[] args)  {        finalTest test = newTest();                newThread(){            publicvoidrun() {                test.get(Thread.currentThread());            };        }.start();                newThread(){            publicvoidrun() {                test.get(Thread.currentThread());            };        }.start();            }          publicsynchronizedvoidget(Thread thread) {        longstart = System.currentTimeMillis();        while(System.currentTimeMillis() - start <= 1) {            System.out.println(thread.getName()+"正在进行读操作");        }        System.out.println(thread.getName()+"读操作完毕");    }} | 
这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕

而改成用读写锁的话:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | publicclassTest {    privateReentrantReadWriteLock rwl = newReentrantReadWriteLock();        publicstaticvoidmain(String[] args)  {        finalTest test = newTest();                newThread(){            publicvoidrun() {                test.get(Thread.currentThread());            };        }.start();                newThread(){            publicvoidrun() {                test.get(Thread.currentThread());            };        }.start();            }          publicvoidget(Thread thread) {        rwl.readLock().lock();        try{            longstart = System.currentTimeMillis();                        while(System.currentTimeMillis() - start <= 1) {                System.out.println(thread.getName()+"正在进行读操作");            }            System.out.println(thread.getName()+"读操作完毕");        } finally{            rwl.readLock().unlock();        }    }} | 
此时打印的结果为:

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1读操作完毕

说明thread1和thread2在同时进行读操作。
这样就大大提升了读操作的效率。
不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。
如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。
关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。
5.Lock和synchronized的选择
总结来说,Lock和synchronized有以下几点不同:
1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;
2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。
5)Lock可以提高多个线程进行读操作的效率。
在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。
三.锁的相关概念介绍
在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。
1.可重入锁
如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。
看下面这段代码就明白了:
| 1 2 3 4 5 6 7 8 9 | classMyClass {    publicsynchronizedvoidmethod1() {        method2();    }        publicsynchronizedvoidmethod2() {            }} | 
上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。
而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。
2.可中断锁
可中断锁:顾名思义,就是可以相应中断的锁。
在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。
在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。
3.公平锁
公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。
非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。
在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。
而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。
看一下这2个类的源代码就清楚了:
  
在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。
我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:
| 1 | ReentrantLock lock = newReentrantLock(true); | 
如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。
  
另外在ReentrantLock类中定义了很多方法,比如:
isFair() //判断锁是否是公平锁
isLocked() //判断锁是否被任何线程获取了
isHeldByCurrentThread() //判断锁是否被当前线程获取了
hasQueuedThreads() //判断是否有线程在等待该锁
在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。
4.读写锁
读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。
正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。
ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。
可以通过readLock()获取读锁,通过writeLock()获取写锁。
上面已经演示过了读写锁的使用方法,在此不再赘述。
Lock和synchronized比较详解(转)的更多相关文章
- (转)Lock和synchronized比较详解
		今天看了并发实践这本书的ReentantLock这章,感觉对ReentantLock还是不够熟悉,有许多疑问,所有在网上找了很多文章看了一下,总体说的不够详细,重点和焦点问题没有谈到,但这篇文章相当不 ... 
- Java多线程(三)—— synchronized关键字详解
		一.多线程的同步 1.为什么要引入同步机制 在多线程环境中,可能会有两个甚至更多的线程试图同时访问一个有限的资源.必须对这种潜在资源冲突进行预防. 解决方法:在线程使用一个资源时为其加锁即可. 访问资 ... 
- “全栈2019”Java多线程第三十二章:显式锁Lock等待唤醒机制详解
		难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ... 
- “全栈2019”Java多线程第十六章:同步synchronized关键字详解
		难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ... 
- Java synchronized 关键字详解
		Java synchronized 关键字详解 前置技能点 进程和线程的概念 线程创建方式 线程的状态状态转换 线程安全的概念 synchronized 关键字的几种用法 修饰非静态成员方法 sync ... 
- Java并发之Synchronized机制详解
		带着问题阅读 1.Synchronized如何使用,加锁的粒度分别是什么 2.Synchronized的实现机制是什么 3.Synchronized是公平锁吗 4.Java对Synchronized做 ... 
- synchronized锁详解
		synchronized的意义 解决了Java共享内存模型带来的线程安全问题: 如:两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?(针对这个问题进行分析 ... 
- Java精通并发-Lock锁机制深入详解
		从这次开始接触Java1.5推出的并发包中的东东,先看一下jdk中的并发包: 接下来咱们则会集中对这些并发包中的核心进行深入了解,不光要学会怎么用这些并发包中的类,而且还得知道这些功能背后运行的原理, ... 
- 从线程池到synchronized关键字详解
		线程池 BlockingQueue synchronized volatile 前段时间看了一篇关于"一名3年工作经验的程序员应该具备的技能"文章,倍受打击.很多熟悉而又陌生的知识 ... 
随机推荐
- 什么是TOML?
			配置文件的使用由来已久,从.ini.XML.JSON.YAML再到TOML,语言的表达能力越来越强,同时书写便捷性也在不断提升. TOML是前GitHub CEO, Tom Preston-Werne ... 
- 中资收购美新半导体,为何能通过CFIUS审查(其实是国内公司,技术水平国内领先,和国际仍有差距)
			日前,华灿光电发布公告称,旗下子公司和谐光电收购美国美新半导体终获得CFIUS审查通过.这是中资收购豪威科技.图芯科技等公司之后,再次从美国成功收购半导体企业.而且本次中资收购美新半导体还是在特朗普上 ... 
- QML Settings 小的示例
			QML 中使用 Settings 可以保存一些简单的信息,例如用户名,密码,窗口位置,大小等,没有Sqlite那么麻烦,简单易用哦~~~(环境:Qt5.8 for android ,Windows ... 
- x64内联汇编调用API(需intel编译器,vc不支持x64内联汇编)
			#include "stdafx.h" #include <windows.h> STARTUPINFOW StartInfo = {0}; PROCESS_INFO ... 
- shell多线程之进程间通信
			# 这是一个简单的并发程序,有如下要求: # .有两个程序a和b,希望他们能并发执行,以节约时间 # .a和b都是按照日期顺序执行,但b每日程序的前提条件是当日a的程序已经执行完毕 #解决方案: # ... 
- win7 docker安装文件及安装问题
			最近在玩爬虫,需要装docker,但是官网对于win7版本,只支持docker tool box,在官网找了半天才找到安装包,特此上传百度网盘,方便各位下载 链接:https://pan.baidu. ... 
- Electron构建一个文件浏览器应用(二)
			在前一篇文章我们已经学习到了使用Electron来构建我们的文件浏览器了基础东西了,我们之前已经完成了界面功能和显示文件或文件夹的功能了,想看之前文章,请点击这个链接 .现在我们需要在之前的基础上来 ... 
- Scala 学习之路(十三)——  隐式转换和隐式参数
			一.隐式转换 1.1 使用隐式转换 隐式转换指的是以implicit关键字声明带有单个参数的转换函数,它将值从一种类型转换为另一种类型,以便使用之前类型所没有的功能.示例如下: // 普通人 clas ... 
- Shell学习笔记1》转载自runnoob
			无论是shell 还是bat,都是与操作系统结合非常紧密的东西,所以在此占坑,希望有朝一日能够把这些东西融会贯通,于是在此占坑~ 学习地址:http://www.runoob.com/linux/li ... 
- java 字节码指令集
			This is a list of the instructions that make up the Java bytecode, an abstract machine language that ... 
