题号 标题 已通过代码 题解 通过率 团队的状态
A meeting 点击查看 树直径 604/2055  
B xor 点击查看 线段树维护线性基交 81/861 未通过
C sequence 点击查看 单调栈,笛卡尔树 479/2755  
D triples I 点击查看 构造 464/2974  
E triples II 点击查看 进入讨论 35/84 未通过
F merge 点击查看 splay,FHQ-TREE 4/37  
G tree 点击查看 进入讨论 2/43 未通过
H RNGs 点击查看 进入讨论 1/66 未通过
I string 点击查看 后缀数组,回文树 157/677  
J free 点击查看 分层图最短路 784/2790  
K number 点击查看 dp 859/3484  

K

题意

问一个字符串中有多少个连续子串是300的倍数

思路

O(300n)的dp即可

#include <bits/stdc++.h>

using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; /**********showtime************/
const int maxn = 1e5+;
ll dp[maxn][];
char str[maxn];
int main(){
scanf("%s", str + );
int n = strlen(str + );
// dp[0][0] = 1;
ll ans = ;
for(int i=; i<n; i++) {
int tp = str[i + ] - '';
for(int j=; j<; j++) {
// debug(tp);
dp[i+][(j* + tp) % ] += dp[i][j];
}
dp[i+][tp] ++;
ans += dp[i+][];
}
printf("%lld\n", ans);
return ;
}

F merge

题意

给定一个1~n的排列,有两种操作,1)对区间 [le,mid]和[mid+1, ri] 进行一次归并排序,2)查询区间第i个位子上的值。

思路

利用fhq_tree。区间分裂操作。

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include <bits/stdc++.h> using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; /**********showtime************/ struct fhq_treap {
static const int N = 1e5 + ;
struct Node {
int val, key, lc, rc, sz, mx;
}tree[N];
int rt, tot;
inline void init() {
rt = tot = ;
tree[rt].sz = tree[rt].val = tree[rt].lc = tree[rt].rc = ;
srand(time());
}
inline void update(int rt) {
tree[rt].sz = tree[tree[rt].lc].sz + + tree[tree[rt].rc].sz;
tree[rt].mx = max(tree[tree[rt].lc].mx,max(tree[rt].val,tree[tree[rt].rc].mx));
} void split_val(int rt, int &a, int &b, int val) {
if(rt == ) {a = b = ; return ;}
if(max(tree[rt].val , tree[tree[rt].lc].mx) <= val) {
a = rt;
split_val(tree[rt].rc, tree[a].rc, b, val);
}
else {
b = rt;
split_val(tree[rt].lc, a, tree[b].lc, val);
}
update(rt);
}
void split_sz(int rt, int &a, int &b, int sz) {
if(rt == ) {a = b = ; return ;}
if(tree[tree[rt].lc].sz + > sz) {
b = rt;
split_sz(tree[rt].lc, a, tree[b].lc, sz);
}
else {
a = rt;
split_sz(tree[rt].rc, tree[a].rc, b, sz - - tree[tree[rt].lc].sz);
}
update(rt);
} void merge(int &rt, int a, int b) {
if(a== || b==) {
rt = a+b;
return ;
}
if(tree[a].key < tree[b].key) {
rt = a;
merge(tree[rt].rc, tree[a].rc, b);
}
else {
rt = b;
merge(tree[rt].lc, a, tree[b].lc);
}
update(rt);
} inline int new_node(int val) {
tree[++tot].sz = ;
tree[tot].val = val;
tree[tot].lc = tree[tot].rc = ;
tree[tot].key = rand();
tree[tot].mx = val;
return tot;
} void ins(int &rt, int val) {
int x = , y = , node = new_node(val);
merge(rt, rt, node);
}
void delete_node(int &rt, int val) {
int x = , y = , z = ;
split_val(rt, x, y, val);
split_val(x, x, z, val-);
merge(z, tree[z].lc, tree[z].rc);
merge(x, x, z);
merge(rt, x, y);
}
inline int get_kth(int rt, int k) {
while(tree[tree[rt].lc].sz+ != k) {
if(tree[tree[rt].lc].sz >= k) rt = tree[rt].lc;
else k -= tree[tree[rt].lc].sz+, rt = tree[rt].rc;
}
return tree[rt].val;
}
int get_rnk(int &rt, int val) {
int x = , y = ;
split_val(rt, x, y, val-);
int tmp = tree[x].sz+;
merge(rt, x, y);
return tmp;
}
int get_pre(int &rt, int val) {
int x = , y = ;
split_val(rt, x, y, val-);
int tmp = get_kth(x, tree[x].sz);
merge(rt, x, y);
return tmp;
}
int get_scc(int &rt, int val) {
int x = , y = ;
split_val(rt, x, y, val);
int tmp = get_kth(y, );
merge(rt, x, y);
return tmp;
}
}t; const int maxn = 1e5+;
int n,m;
int a[maxn];
void display(int x) {
if(t.tree[x].lc) display(t.tree[x].lc);
if(t.tree[x].rc) display(t.tree[x].rc);
}
void solve(int le, int mid ,int ri) {
int x, y, z;
t.split_sz(t.rt, x, z, ri);
t.split_sz(x, x, y, mid); int tmp;
int r = ;
while(x && y) {
int p = t.get_kth(x, );
int q = t.get_kth(y, ); if(p > q) swap(p, q), swap(x, y);
t.split_val(x, tmp, x, q);
t.merge(r,r, tmp);
}
t.merge(r, r, x);
t.merge(r, r, y);
t.merge(r, r, z);
t.rt = r;
}
int main(){
t.init();
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++) {
scanf("%d", &a[i]);
t.ins(t.rt, a[i]);
}
while(m--){
int op; scanf("%d", &op);
if(op == ) {
int x; scanf("%d", &x);
printf("%d\n", t.get_kth(t.rt, x));
}
else {
int le, mid, ri;
scanf("%d%d%d", &le, &mid, &ri);
solve(le, mid, ri);
}
}
return ;
} /*
5 10
3 2 1 5 4
1 1 2 5 */

2019nc#4的更多相关文章

  1. 2019nc#2

    A Eddy Walker 题意 你有n个点(0-n-1),按顺序形成一个环,初始时你在0的位子,你随机顺时针走一步或者逆时针走一步, 一旦你走到一个点后,环上所有点都被经过至少一次后,你就必须停下来 ...

  2. 2019nc#10

    题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A Blackjack 点击查看 背包DP 32/109 补好了 B Coffee Chicken 点击查看 进入讨论 738/2992  通过 ...

  3. 2019nc#9

    题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A The power of Fibonacci 点击查看 进入讨论 69/227 未通过 B Quadratic equation 点击查看 ...

  4. 2019NC#8

    题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A All-one Matrices 点击查看 单调栈+前缀和 326/2017  通过 B Beauty Values 点击查看 进入讨论 8 ...

  5. 2019nc#7

    题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A String 点击查看 进入讨论 566/3539  通过 B Irreducible Polynomial 点击查看 规律 730/229 ...

  6. 2019nc#6

    https://ac.nowcoder.com/acm/contest/886#question 题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A Garbage Classificatio ...

  7. 2019nc#5

    题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A digits 2 点击查看 1017/2384  通过 B generator 1 点击查看 567/3692  通过 C generato ...

  8. 2019nc#3

    题号 标题 已通过代码 题解/讨论 通过率 团队的状态 A Graph Games 点击查看 进入讨论 18/292 未通过 B Crazy Binary String 点击查看 1107/3615 ...

  9. 2019NC#1

    LINK B Integration 题意: 给定$a_1,a_2,...,a_n$, 计算 $$\frac{1}{π}\int_{0}^{\infty}\frac{1}{\prod\limits_{ ...

随机推荐

  1. javaweb入门-----request与response的作用

    request对象和request对象的原理 1.request和response对象request对象和request对象的原理时由服务器创建的,我们来使用它们 2.request对象是来获取请求消 ...

  2. pycharm与monkeyrunner测试

      操作命令: 导包: import sysfrom com.android.monkeyrunner import MonkeyRunner,MonkeyDevice  device=MonkeyR ...

  3. 2019前端面试系列——JS高频手写代码题

    实现 new 方法 /* * 1.创建一个空对象 * 2.链接到原型 * 3.绑定this值 * 4.返回新对象 */ // 第一种实现 function createNew() { let obj ...

  4. 保存localStorage并访问

    将用户的输入保存至localStorage对象的属性中,这些属性在再次访问时还会继续保持在原位置. 如果你在浏览器中按照fil://URL的方式直接打开本地文件,则文法在某些浏览器中使用存储功能(比如 ...

  5. PIP键盘设置实时时钟--智能模块

    大家好,许久没来发帖,今天带来点干货.希望大家多多讨论,相互学习. 使用 TOPWAY Smart LCD (HMT050CC-C) PIP键盘设置实时时钟   第一步  建立工程  第二步  建立2 ...

  6. 【Python】狂蟒来袭 | 使用Anaconda搭建Python开发环境

    这段时间转了一个小圈圈,发现又回来了,瞎忙.想要学习数据挖掘的小伙伴一定得对机器学习有所了解吧,我之前看过几页周志华老师的西瓜书,但终没能坚持下来. 人生处处是起点,什么时候都不晚.记此笔记以分享与督 ...

  7. vue-cli项目下引入vant组件

    前言 Vant是有赞前端团队基于有赞统一的规范实现的 Vue 组件库,提供了一整套 UI 基础组件和业务组件.通过 Vant,可以快速搭建出风格统一的页面,提升开发效率.目前已有近50个组件,这些组件 ...

  8. 还在为垂直居中苦恼?CSS 布局利器 flexbox 轻轻松松帮你搞定

    传统的 CSS 布局方式是基于盒模型(它是根据盒子与父盒子以及兄弟盒子的关系确定大小和位置的算法),实现时依赖于 block, inline, table, position, float 这些属性, ...

  9. android ——可折叠式标题栏

    CollapsingToolbarLayout是一个作用于Toolbar上的布局,可以让Toolbar的效果变得更加丰富: 但是CollapsingToolbarLayout是不能独立存在的,它这能作 ...

  10. intellij idea 2019 安装使用教程

    一.安装 idea   2019.2   链接:https://pan.baidu.com/s/1acx_P23W463it9PGAYUIBw 提取码:4bky 双击运行idea.exe 点击Next ...