神经网络的理论知识不是本文讨论的重点,假设读者们都是已经了解RNN的基本概念,并希望能用一些框架做一些简单的实现。这里推荐神经网络必读书目:邱锡鹏《神经网络与深度学习》。本文基于Pytorch简单实现CIFAR-10、MNIST手写体识别,读者可以基于此两个简单案例进行拓展,实现自己的深度学习入门。

环境说明

  python 3.6.7

  Pytorch的CUP版本

  Pycharm编辑器

  部分可能报错参见pytorch安装错误及解决

基于Pytorch的CIFAR-10图片分类

代码实现

# coding = utf-8

import torch
import torch.nn
import numpy as np
from torchvision.datasets import CIFAR10
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import torch.nn.functional as F
import torch.optim as optimizer '''
The compose function allows for multiple transforms.
transform.ToTensor() converts our PILImage to a tensor of
shape (C x H x W) in the range [0, 1]
transform.Normalize(mean, std) normalizes a tensor to a (mean, std)
for (R, G, B)
'''
_task = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]) # 注意:此处数据集在本地,因此download=False;若需要下载的改为True
# 同样的,第一个参数为数据存放路径
data_path = '../CIFAR_10_zhuanzhi/cifar10'
cifar = CIFAR10(data_path, train=True, download=False, transform=_task) # 这里只是为了构造取样的角标,可根据自己的思路进行拓展
# 此处使用了前百分之八十作为训练集,百分之八十到九十的作为验证集,后百分之十为测试集
samples_count = len(cifar)
split_train = int(0.8 * samples_count)
split_valid = int(0.9 * samples_count) index_list = list(range(samples_count))
train_idx, valid_idx, test_idx = index_list[:split_train], index_list[split_train:split_valid], index_list[split_valid:] # 定义采样器
# create training and validation, test sampler
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
test_samlper = SubsetRandomSampler(test_idx ) # create iterator for train and valid, test dataset
trainloader = DataLoader(cifar, batch_size=256, sampler=train_sampler)
validloader = DataLoader(cifar, batch_size=256, sampler=valid_sampler)
testloader = DataLoader(cifar, batch_size=256, sampler=test_samlper ) # 网络设计
class Net(torch.nn.Module):
"""
网络设计了三个卷积层,一个池化层,一个全连接层
"""
def __init__(self):
super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = torch.nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = torch.nn.Conv2d(32, 64, 3, padding=1)
self.pool = torch.nn.MaxPool2d(2, 2)
self.linear1 = torch.nn.Linear(1024, 512)
self.linear2 = torch.nn.Linear(512, 10) # 前向传播
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 1024)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x)) return x if __name__ == "__main__": net = Net() # 实例化网络
loss_function = torch.nn.CrossEntropyLoss() # 定义交叉熵损失 # 定义优化算法
optimizer = optimizer.SGD(net.parameters(), lr=0.01, weight_decay=1e-6, momentum=0.9, nesterov=True) # 迭代次数
for epoch in range(1, 31):
train_loss, valid_loss = [], [] net.train() # 训练开始
for data, target in trainloader:
optimizer.zero_grad() # 梯度置0
output = net(data)
loss = loss_function(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
train_loss.append(loss.item()) net.eval() # 验证开始
for data, target in validloader:
output = net(data)
loss = loss_function(output, target)
valid_loss.append(loss.item()) print("Epoch:{}, Training Loss:{}, Valid Loss:{}".format(epoch, np.mean(train_loss), np.mean(valid_loss)))
print("======= Training Finished ! =========") print("Testing Begining ... ") # 模型测试
total = 0
correct = 0
for i, data_tuple in enumerate(testloader, 0): data, labels = data_tuple
output = net(data)
_, preds_tensor = torch.max(output, 1) total += labels.size(0)
correct += np.squeeze((preds_tensor == labels).sum().numpy())
print("Accuracy : {} %".format(correct/total))

实验结果

经验总结

1.激活函数的选择。

  • 激活函数可选择sigmoid函数或者Relu函数,亲测使用Relu函数后,分类的正确率会高使用sigmoid函数很多;
  • Relu函数的导入有两种:import torch.nn.functional as F, 然后F.relu(),还有一种是torch.nn.Relu() 两种方式实验结果没区别,但是推荐使用后者;因为前者是以函数的形式导入的,在模型保存时,F中相关参数会被释放,无法保存下去,而后者会保留参数。

2.预测结果的处理。

  Pytorch预测的结果,返回的是一个Tensor,需要处理成数值才能进行准确率计算,.numpy()方法能将Tensor转化为数组,然后使用squeeze能够将数组转化为数值。

3. 数据加载。Pytorch是采用批量加载数据的,因此使用for循环迭代从采样器中加载数据,batch_size参数指定每次加载数据量的大小

4.注意维度。

  • 网络设计中的维度。网络层次设计中,要谨记前一层的输出是后一层的输入,维度要对应的上。
  • 全连接中的维度。全连接中要从特征图中选取特征,这些特征不是一维的,而全连接输出的结果是一维的,因此从特征图中选取特征作为全连接层输入前,需要将特征展开,例如:x = x.view(-1, 28*28)

基于Pytorch的MNIST手写体识别

代码实现

# coding = utf-8
import numpy as np
import torch
from torchvision import transforms _task = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
[0.5], [0.5]
)
]) from torchvision.datasets import MNIST # 数据集加载
mnist = MNIST('./data', download=False, train=True, transform=_task) # 训练集和验证集划分
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler # create training and validation split
index_list = list(range(len(mnist))) split_train = int(0.8*len(mnist))
split_valid = int(0.9*len(mnist)) train_idx, valid_idx, test_idx = index_list[:split_train], index_list[split_train:split_valid], index_list[split_valid:] # create sampler objects using SubsetRandomSampler
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
test_sampler = SubsetRandomSampler(test_idx) # create iterator objects for train and valid dataset
trainloader = DataLoader(mnist, batch_size=256, sampler=train_sampler)
validloader = DataLoader(mnist, batch_size=256, sampler=valid_sampler)
test_loader = DataLoader(mnist, batch_size=256, sampler=test_sampler ) # design for net
import torch.nn.functional as F
class NetModel(torch.nn.Module):
def __init__(self):
super(NetModel, self).__init__()
self.hidden = torch.nn.Linear(28*28, 300)
self.output = torch.nn.Linear(300, 10) def forward(self, x):
x = x.view(-1, 28*28)
x = self.hidden(x)
x = F.relu(x)
x = self.output(x)
return x if __name__ == "__main__":
net = NetModel() from torch import optim
loss_function = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, weight_decay=1e-6, momentum=0.9, nesterov=True) for epoch in range(1, 12):
train_loss, valid_loss = [], []
# net.train()
for data, target in trainloader:
optimizer.zero_grad()
# forward propagation
output = net(data)
loss = loss_function(output, target)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
# net.eval()
for data, target in validloader:
output = net(data)
loss = loss_function(output, target)
valid_loss.append(loss.item())
print("Epoch:", epoch, "Training Loss:", np.mean(train_loss), "Valid Loss:", np.mean(valid_loss)) print("testing ... ")
total = 0
correct = 0
for i, test_data in enumerate(test_loader, 0):
data, label = test_data
output = net(data)
_, predict = torch.max(output.data, 1) total += label.size(0)
correct += np.squeeze((predict == label).sum().numpy())
print("Accuracy:", (correct/total)*100, "%")

实验结果

经验总结

  1.网络设计的使用只用了一个隐层,单隐层神经网络经过10词迭代,对手写体识别准确率高达97%!!简直变态啊!

  2.loss.item()和loss.data[0]。好像新版本的pytorch放弃了loss.data[0]的表达方式。

  3.手写体识别的图片是单通道图片,因此在transforms.Compose()中做标准化的时候,只需要指定一个值即可;而cifar中的图片是三通道的,因此需要指定三个参数。

基于Pytorch的简单小案例的更多相关文章

  1. Angular.js路由 简单小案例

    代码案例: <html> <head> <meta charset="utf-8"> <title>AngularJS 路由实例&l ...

  2. touch滑动事件---简单小案例

    html: <!--导航栏头部--><div class="type_nav"> <ul class="clearfix " v- ...

  3. Vuex-全局状态管理【简单小案例】

    前言: Vuex个人见解: 1.state :所有组件共享.共用的数据.理解为不是一个全局变量,不能直接访问以及操作它.2.mutations : 如何操作 state 呢?需要有一个能操作state ...

  4. angular前端框架简单小案例

    一.angular表达式 <head> <meta charset="UTF-8"> <title>Title</title> &l ...

  5. Session小案例-----简单购物车的使用

    Session小案例-----简单购物车的使用 同上篇一样,这里的处理请求和页面显示相同用的都是servlet. 功能实现例如以下: 1,显示站点的全部商品 2.用户点击购买后,可以记住用户选择的商品 ...

  6. Netty学习——基于netty实现简单的客户端聊天小程序

    Netty学习——基于netty实现简单的客户端聊天小程序 效果图,聊天程序展示 (TCP编程实现) 后端代码: package com.dawa.netty.chatexample; import ...

  7. 一个简单的Maven小案例

    Maven是一个很好的软件项目管理工具,有了Maven我们不用再费劲的去官网上下载Jar包. Maven的官网地址:http://maven.apache.org/download.cgi 要建立一个 ...

  8. 基于C语言libvirt API简单小程序

    libvirt API简单小程序 1.程序代码如下 #include<stdio.h> #include<libvirt/libvirt.h> int getDomainInf ...

  9. Nancy之基于Nancy.Owin的小Demo

    前面做了基于Nancy.Hosting.Aspnet和Nancy.Hosting.Self的小Demo 今天我们来做个基于Nancy.Owin的小Demo 开始之前我们来说说什么是Owin和Katan ...

随机推荐

  1. django-数据库之连接数据库

    1.连接数据库出现的一些问题 基本目录如下: 首先我们pip install pymysql 然后在项目中,进行配置settings.py: 然后在__init__.py中进行输入: 启动服务器: 报 ...

  2. python的GIL锁

    进程:系统运行的一个程序,是系统分配资源的基本单位. 线程:是进程中执行运算的最小单位,是处理机调度的基本单位. 处理机:是计算机中存储程序和数据,并按照程序规定的步骤执行指令的部件.包括中央处理器. ...

  3. 前端技术之:Prisma Demo服务部署过程记录

    安装前提条件: 1.已经安装了docker运行环境 2.以下命令执行记录发生在MackBook环境 3.已经安装了PostgreSQL(我使用的是11版本) 4.Node开发运行环境可以正常工作   ...

  4. Python文件处理:创建、打开、追加、读、写

    在Python中,不需要导入外部库来读取和写入文件.Python为创建.写入和读取文件提供了内置的函数. 在本文中,我们将学习 如何创建文本文件 如何将数据附加到文件中 如何读取文件 如何逐行读取文件 ...

  5. NOIP模拟27

    两个机房又和在一起考试 开场看了看T1,感觉挺水的,过. T2,这个式子有点奇怪,暂时没什么思路,过 T3,好像保留最后几位换个根处理一下就行了,过,先去打T1 于是T1大概打了0.5h,连暴力带正解 ...

  6. GitHub + jsDelivr + PicGo + Imagine 打造稳定快速、高效免费图床

    GitHub + jsDelivr + PicGo + Imagine 打造稳定快速.高效免费图床 前言 为什么要使用图床呢? 因为在不同平台发布同一篇文章的时候,最一个痛苦的点就是,图片存储问题,各 ...

  7. php imagick设置图片圆角的方法

    php imagick设置图片圆角的方法 <pre>header('Content-Type: image/png'); $image = new Imagick('http://stat ...

  8. hashMapp

    原文链接:https://www.iteye.com/topic/539465 Hashmap是一种非常常用的.应用广泛的数据类型,最近研究到相关的内容,就正好复习一下.网上关于hashmap的文章很 ...

  9. 6. SOFAJRaft源码分析— 透过RheaKV看线性一致性读

    开篇 其实这篇文章我本来想在讲完选举的时候就开始讲线性一致性读的,但是感觉直接讲没头没尾的看起来比比较困难,所以就有了RheaKV的系列,这是RheaKV,终于可以讲一下SOFAJRaft的线性一致性 ...

  10. Java面向对象程序设计第15章5

    5. 利用URLConnetction对象编写程序返回某网站的首页,并将首页的内容存放到文件当中. import java.net.*; import java.io.*; public class ...