费马平方和定理&&斐波那契恒等式&&欧拉四平方和恒等式&&拉格朗日四平方和定理
费马平方和定理
费马平方和定理的表述是:奇素数能表示为两个平方数之和的充分必要条件是该素数被4除余1.
1. 如果两个整数都能表示为两个平方数之和的形式,则他们的积也能表示为两个平方数之和的形式。
$$\begin{aligned}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) &=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2} \\ &=\left(a^{2} c^{2}+b^{2} d^{2}-2 a b c d\right)+\left(a^{2} d^{2}+b^{2} c^{2}+2 a b c d\right) \\ &=(a c-b d)^{2}+(a d+b c)^{2} \end{aligned}$$
2. 如果一个能表示为两个平方数之和的整数,能被另一个能表示为两个平方数之和的素数整除,则他们的商也能表示为两个平方数之和。
即 $\frac{a^{2}+b^{2}}{p^{2}+q^{2}}=\left(\frac{q p+b q}{p^{2}+q^{2}}\right)^{2}+\left(\frac{a q-b p}{p^{2}+q^{2}}\right)^{2}$
3.如果 $a$ 和 $b$ 互质,则 $a^2+b^2$ 的所有因子都能表示成两个平方数之和
4. 任何形如 $4n+1$ 的素数都能表示为两个平方数之和的形式
婆罗摩笈多-斐波那契恒等式
婆罗摩笈多-斐波那契恒等式是以下的恒等式:
$$\begin{aligned}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) &=(a c-b d)^{2}+(a d+b c)^{2} \\ &=(a c+b d)^{2}+(a d-b c)^{2} \end{aligned}$$
这个恒等式说明了如果有两个数都能表示为两个平方数的和,则这两个数的积也可以表示为两个平方数的和。例如,
欧拉四平方和定理
欧拉四平方和恒等式说明,如果两个数都能表示为四个平方数的和,则这两个数的积也能表示为四个平方数的和。等式为:
$$\begin{aligned}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right) &=\\\left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)^{2}+& \\\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2}+& \\\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right)^{2} &+\\\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)^{2} \end{aligned}$$
拉格朗日四平方和定理
四平方和定理:每个正整数均可表示成4个整数的平方和。
注意有些整数不可表示为3个整数的平方和,例如7。
等价的说法是:每个正整数均可表示成不超过四个整数的平方之和。
重要推论:
1. 数 $n$ 只能表示成四个整数的平方和,不能表示成更少个数的平方和,必定满足 $4^a(8b+7)$.
2. 如果 n%4==0,k=n/4,n 和 k 可由相同个数的整数表示
如何利用推论求一个正整数最少需要多少个数的平方和表示:
1. 先判断这个数是否满足 $4^a(8b+7)$,如果满足,那么这个数就至少需要 4 个数的平方和表示。
2. 如果不满足,再在上面除以 4 之后的结果上暴力尝试只需要 1 个数就能表示和只需要 2 个数就能表示的情况。
3. 如果还不满足,那么就只需要 3 个数就能表示。
参考链接:
1. https://zh.wikipedia.org/wiki/费马平方和定理
2.https://zh.wikipedia.org/wiki/婆罗摩笈多-斐波那契恒等式
3. https://zh.wikipedia.org/wiki/欧拉四平方和恒等式
4. https://blog.csdn.net/qq_41746268/article/details/98513714
5. https://blog.csdn.net/l_mark/article/details/89044137
费马平方和定理&&斐波那契恒等式&&欧拉四平方和恒等式&&拉格朗日四平方和定理的更多相关文章
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- 3969 [Mz]平方和【斐波那契平方和】
3969 [Mz]平方和 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 大师 Master 题解 查看运行结果 题目描述 Description 斐波那契数列:f[0 ...
- 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解
题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- 2021.07.26 P1011 车站(斐波那契数列)
2021.07.26 P1011 车站(斐波那契数列) [P1011 NOIP1998 提高组] 车站 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.改变形式的斐波那契 ...
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3) mod 1000000007 是质数 , 依据费马小定理 a^phi( p ) = 1 ( ...
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
随机推荐
- Python 腾讯云短信,发送手机验证码
1.安装包 pip install qcloudsms_py 2.准备好相关参数 腾讯云短信每个月赠送100条短信,申请一个应用,获取appid,然后创建短信签名,然后创建正文模版 3.发送短信 我们 ...
- SpringCloud Feign 参数问题
今天遇到使用Feign调用微服务,传递参数时遇到几个问题 1.无参数 以GET方式请求 服务提供者 @RequestMapping("/hello") public String ...
- 下载工具系列——Aria2 (几乎全能的下载神器)
一.介绍 说完了前面一堆BT/PT客户端,现在终于轮到Aria2了,关于这个我就不介绍太多了,自从百度限速以来我觉得这个快变成众所周知的了,我平时也收集了各种和Aria2相关的插件或者是辅助软件之类的 ...
- 集合类源码(五)Collection之BlockingQueue(LinkedTransferQueue, PriorityBlockingQueue, SynchronousQueue)
LinkedTransferQueue 功能 全名 public class LinkedTransferQueue<E> extends AbstractQueue<E> i ...
- Python数据分析Pandas的编程经验总结
Pandas的api 参考手册DataFrame部分:https://pandas.pydata.org/pandas-docs/stable/reference/frame.html 数据处理部分: ...
- Java中如何获取一个类中泛型的实际类型
本文链接:https://blog.csdn.net/kuuumo/article/details/83021158 _______________________________________ ...
- ionic 股票列表 网络读取数据,实现下拉刷新,上拉加载
html: <ion-header> <ion-toolbar> <ion-title> 股票 </ion-title> </ion-toolba ...
- Razor Page中的AJAX
1.由于Razor Pages自带提供防伪令牌/验证,用来防止跨站点请求伪造(称为XSRF或CSRF),所以和MVC框架中API使用方式有稍许的不同. 2.所以在我们使用Razor Pages中的fo ...
- vscode+flutter+win10搭建问题记录
1.下载安装vscode.flutter sdk.安装vscode相关插件.android sdk,这些网上有教程,比如https://blog.csdn.net/SVNzK/article/deta ...
- ASP.NET MVC IOC 之 Autofac(二)
在上一章节,我们已经知道了再控制器中如何注入以及使用了.这一章,我们重点讲解下,如何在服务层中使用. 我们新定义一个教师类,在服务层中,通过这个教师类服务层,获取学生的年龄.实现在教师类的服务层中调用 ...