USACO Making the Grade
洛谷 P2893 [USACO08FEB]修路Making the Grade
https://www.luogu.org/problemnew/show/P2893
JDOJ 2566: USACO 2008 Feb Gold 1.Making the Grade
https://neooj.com:8082/oldoj/problem.php?id=2566
POJ Making the Grade
http://poj.org/problem?id=3666
Description
A straight dirt road connects two fields on FJ's farm, but it changes
elevation more than FJ would like. His cows do not mind climbing
up or down a single slope, but they are not fond of an alternating
succession of hills and valleys. FJ would like to add and remove
dirt from the road so that it becomes one monotonic slope (either
sloping up or down).
You are given N integers A_1, . . . , A_N (1 <= N <= 2,000) describing
the elevation (0 <= A_i <= 1,000,000,000) at each of N equally-spaced
positions along the road, starting at the first field and ending
at the other. FJ would like to adjust these elevations to a new
sequence B_1, . . . , B_N that is either nonincreasing or nondecreasing.
Since it costs the same amount of money to add or remove dirt at
any position along the road, the total cost of modifying the road
is
|A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N|
Please compute the minimum cost of grading his road so it becomes
a continuous slope. FJ happily informs you that signed 32-bit
integers can certainly be used to compute the answer.
Input
* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: A_i
Output
* Line 1: A single integer that is the minimum cost for FJ to grade
his dirt road so it becomes nonincreasing or nondecreasing in
elevation.
Sample Input
1
3
2
4
5
3
9
Sample Output
HINT
OUTPUT DETAILS:
By changing the first 3 to 2 and the second 3 to 5 for a total cost of
|2-3|+|5-3| = 3 we get the nondecreasing sequence 1,2,2,4,5,5,9.
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,ans,a[],t[],b[];
int f[][],minf[][];
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
t[i]=a[i];
}
sort(t+,t+n+);
int now=-;
for(int i=;i<=n;i++)
if(now!=t[i])
b[++m]=t[i],now=t[i];
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
f[i][j]=minf[i-][j]+abs(a[i]-b[j]);
if(j==)
minf[i][j]=f[i][j];
else
minf[i][j]=min(minf[i][j-],f[i][j]);
}
ans=minf[n][m];
memset(f,,sizeof(f));
memset(minf,,sizeof(minf));
sort(b+,b+m+,cmp);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
f[i][j]=minf[i-][j]+abs(a[i]-b[j]);
if(j==)
minf[i][j]=f[i][j];
else
minf[i][j]=min(minf[i][j-],f[i][j]);
}
ans=min(ans,minf[n][m]);
printf("%d",ans);
return ;
}
USACO Making the Grade的更多相关文章
- POJ3666Making the Grade[DP 离散化 LIS相关]
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6445 Accepted: 2994 ...
- A-Making the Grade(POJ 3666)
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4656 Accepted: 2206 ...
- poj 3666 Making the Grade(dp)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- bzoj usaco 金组水题题解(1)
UPD:我真不是想骗访问量TAT..一开始没注意总长度写着写着网页崩了王仓(其实中午的时候就时常开始卡了= =)....损失了2h(幸好长一点的都单独开了一篇)....吓得赶紧分成两坨....TAT. ...
- POJ 3666 Making the Grade (动态规划)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- poj3666 Making the grade【线性dp】
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions:10187 Accepted: 4724 ...
- POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)
传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total ...
- [poj 3666] Making the Grade (离散化 线性dp)
今天的第一题(/ω\)! Description A straight dirt road connects two fields on FJ's farm, but it changes eleva ...
- USACO . Your Ride Is Here
Your Ride Is Here It is a well-known fact that behind every good comet is a UFO. These UFOs often co ...
随机推荐
- JAVA中a++ 和 ++a 的区别
- ORB-SLAM2 地图加载
一.前面说了ORB-SLAM地图的保存部分,继续说地图如何加载,因为加载部分相比保存要稍微复杂一些,所以要多说一点. 二.ORB-SLAM2地图加载构成 首先同样是在头文件中声明加载函数,包含地图点和 ...
- Excel已损坏,无法打开
突然之间,很多EXCEL文件打开时报错:"已损坏,无法打开",这些文件共同点是从邮件中下载而来,这些文件可能面临着安全威协,原来是软件设置了受保护的视图,取消即可.
- Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!
本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...
- Composer 的安装
最近在家休息了两个月,本来打算看看书,结果和朋友做了个小项目.项目也差不多接近尾声了,就准备找工作了,朋友推荐我去他们公司做事,不过是使用 PHP 进行开发了.我这一年来使用 Java 进行开发,今后 ...
- vuex源码分析(二) state及strict属性 详解
state也就是vuex里的值,也即是整个vuex的状态,而strict和state的设置有关,如果设置strict为true,那么不能直接修改state里的值,只能通过mutation来设置 例1: ...
- Vue.js 源码分析(二十七) 高级应用 异步组件 详解
当我们的项目足够大,使用的组件就会很多,此时如果一次性加载所有的组件是比较花费时间的.一开始就把所有的组件都加载是没必要的一笔开销,此时可以用异步组件来优化一下. 异步组件简单的说就是只有等到在页面里 ...
- css彩虹文字
用CSS3实现彩虹文字的效果,只在Webkit内核的浏览器(谷歌浏览器或移动端)上有效果. background-image: -webkit-gradient(linear, left top, r ...
- 打印X
***.....***// .***...***.// ..***.***..// ...*****...// ....***....// ...*****...// ...
- 在秉火STM32F429挑战者开发板上移植Huawei LiteOS指南
昨天在B站上突然看到了一个短视频,是在正点原子的战舰V3开发板上移植华为的Huawei LiteOS操作系统,就是这个视频:看完鸿蒙OS发布会,试用华为的物联网操作系统Lite OS(B站),于是呢, ...