题目链接

题目链接

题解

题面上面很明显的提示了需要严格\(O(n^3)\)的算法。

先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 \log n^2)\)的。

考虑另外一个做法,同样是枚举右下角\((x,y)\),然后枚举一边长度,显然现在只需要知道左边最远能延伸到哪,这个玩意显然是有单调性的,那么尺取一下,套个单调队列判断即可。

注意细节。

#include <bits/stdc++.h>
using namespace std; namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf;
inline char gc() {
if(p1 != p2) return *p1++;
p1 = buf;
p2 = p1 + fread(buf, 1, 1 << 21, stdin);
return p1 == p2 ? EOF : *p1++;
}
#define G gc #ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif template<class I>
inline void read(I &x) {
x = 0; I f = 1; char c = G();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
x *= f;
} template<class I>
inline void write(I x) {
if(x == 0) {putchar('0'); return;}
I tmp = x > 0 ? x : -x;
if(x < 0) putchar('-');
int cnt = 0;
while(tmp > 0) {
buf[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while(cnt > 0) putchar(buf[--cnt]);
} #define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ') } using namespace io; #define ll long long
const int N = 510; struct Node {
int x, y, v;
};
int T, n, m;
int a[N][N], mx[N], mn[N];
int qmin[N], qmax[N]; int main() {
read(T);
while(T--) {
int ans = 0;
read(n); read(m);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) read(a[i][j]);
for(int l = 1; l <= n; ++l) {
for(int i = 1; i <= n; ++i) mn[i] = 1e9, mx[i] = 0;
for(int r = l; r <= n; ++r) {
for(int i = 1; i <= n; ++i) {
mn[i] = min(mn[i], a[r][i]);
mx[i] = max(mx[i], a[r][i]);
}
int cur = 1, l0 = 1, l1 = 1, r0 = 0, r1 = 0;
for(int i = 1; i <= n; ++i) {
while(l0 <= r0 && mn[qmin[r0]] > mn[i]) --r0;
while(l1 <= r1 && mx[qmax[r1]] < mx[i]) --r1;
qmin[++r0] = i; qmax[++r1] = i;
while(l0 <= r0 && l1 <= r1 && cur <= i && mx[qmax[l1]] - mn[qmin[l0]] > m) {
++cur;
while(l0 <= r0 && qmin[l0] < cur) ++l0;
while(l1 <= r1 && qmax[l1] < cur) ++l1;
}
if(mx[qmax[l1]] - mn[qmin[l0]] <= m) ans = max(ans, (r - l + 1) * (i - cur + 1));
}
}
}
outn(ans);
}
}

2019牛客多校第三场 F.Planting Trees的更多相关文章

  1. 2019牛客多校第三场F Planting Trees(单调队列)题解

    题意: 求最大矩阵面积,要求矩阵内数字满足\(max - min < m\) 思路: 枚举上下长度,在枚举的时候可以求出每一列的最大最小值\(cmax,cmin\),这样问题就变成了求一行数,要 ...

  2. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

  3. 牛客多校第三场F Planting Trees 单调栈

    Planting Trees 题意 给出一个矩阵,求最大矩阵面积满足该矩阵中任2元素的绝对值之差小于等于M T<1000) (n<500)但是题目明示单组(n*3)可过 分析 又是矩阵问题 ...

  4. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  5. 2019 牛客暑期多校 第三场 F Planting Trees (单调队列+尺取)

    题目:https://ac.nowcoder.com/acm/contest/883/F 题意:求一个矩阵最大面积,这个矩阵的要求是矩阵内最小值与最大值差值<=m 思路:首先我们仔细观察范围,我 ...

  6. 2019年牛客多校第三场 F题Planting Trees(单调队列)

    题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...

  7. 2019牛客多校第三场D BigInteger——基础数论

    题意: 用  $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mo ...

  8. [2019牛客多校第三场][G. Removing Stones]

    题目链接:https://ac.nowcoder.com/acm/contest/883/G 题目大意:有\(n\)堆石头,每堆有\(a_i\)个,每次可以选其中两堆非零的石堆,各取走一个石子,当所有 ...

  9. [题解]Magic Line-计算几何(2019牛客多校第三场H题)

    题目链接:https://ac.nowcoder.com/acm/contest/883/H 题意: 给你偶数个点的坐标,找出一条直线将这n个点分成数量相等的两部分 并在这条直线上取不同的两个点,表示 ...

随机推荐

  1. Altera FPGA 远程升级有关的几个IP的使用

    在做在线远程升级的时候,一般需要两步:1.将数据写到外挂的flash中.2重新启动FPGA配置. 不过要做到远程升级,一般需要在原始程序中就考虑到加入远程升级模块,remote updata IP, ...

  2. odoo 流水码 编码规则

    <?xml version="1.0" encoding="utf-8"?> <odoo> <data noupdate=&quo ...

  3. Python Tkinter 之Listbox控件

    Listbox为列表框控件,它可以包含一个或多个文本项(text item),可以设置为单选或多选.使用方式为Listbox(root,option...). 常用的参数列表如下: 一些常用的函数:

  4. select2的使用

    普通的select不支持搜索,当选项很多的时候,需要一个个下拉查找. 有了select2就方便多了 下载 <https://select2.org/> 引入 <link href=& ...

  5. 【C++札记】const关键字

    C++中const关键字无处不在,我这里做下汇总,作为工具文章方便翻阅. 一:修饰数据成员 修饰的成员一单定义初始化后不能再进行修改,如: const int a = 10; a =20; //重新赋 ...

  6. 嵌入式02 STM32 实验02 端口输入输出各4种模式

    GPIO(General-purpose input/output 通用目的输入/输出端口) 电压(A模拟量)与电平(D数字量) GPIO 8种工作模式(输入四种.输出四种) 1.GPIO_Mode_ ...

  7. Python进阶:程序界的垃圾分类回收

    垃圾回收是 Python 自带的机制,用于自动释放不会再用到的内存空间: 什么是内存泄漏呢? 内存泄漏,并不是说你的内存出现了信息安全问题,被恶意程序利用了,而是指程序本身没有设计好,导致程序未能释放 ...

  8. 使用 Issue 管理软件项目详解

    文章来源:http://www.ruanyifeng.com/blog/2017/08/issue.html 软件开发(尤其是商业软件)离不开项目管理,Issue 是最通用的管理工具之一. 本文介绍 ...

  9. ssh远程连接一段时间会失效的问题

    话不多讲,先说明我的环境和远程环境. 本地环境:Ubuntu18.04(client) 远程环境:Ubuntu16.04(server) 我的一个小项目部署在百度云的Ubuntu服务器上,需要经常使用 ...

  10. Python之TensorFlow的卷积神经网络-5

    一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...