2019牛客多校第三场 F.Planting Trees
题目链接
题解
题面上面很明显的提示了需要严格\(O(n^3)\)的算法。
先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 \log n^2)\)的。
考虑另外一个做法,同样是枚举右下角\((x,y)\),然后枚举一边长度,显然现在只需要知道左边最远能延伸到哪,这个玩意显然是有单调性的,那么尺取一下,套个单调队列判断即可。
注意细节。
#include <bits/stdc++.h>
using namespace std;
namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf;
inline char gc() {
if(p1 != p2) return *p1++;
p1 = buf;
p2 = p1 + fread(buf, 1, 1 << 21, stdin);
return p1 == p2 ? EOF : *p1++;
}
#define G gc
#ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif
template<class I>
inline void read(I &x) {
x = 0; I f = 1; char c = G();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
x *= f;
}
template<class I>
inline void write(I x) {
if(x == 0) {putchar('0'); return;}
I tmp = x > 0 ? x : -x;
if(x < 0) putchar('-');
int cnt = 0;
while(tmp > 0) {
buf[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while(cnt > 0) putchar(buf[--cnt]);
}
#define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ')
} using namespace io;
#define ll long long
const int N = 510;
struct Node {
int x, y, v;
};
int T, n, m;
int a[N][N], mx[N], mn[N];
int qmin[N], qmax[N];
int main() {
read(T);
while(T--) {
int ans = 0;
read(n); read(m);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) read(a[i][j]);
for(int l = 1; l <= n; ++l) {
for(int i = 1; i <= n; ++i) mn[i] = 1e9, mx[i] = 0;
for(int r = l; r <= n; ++r) {
for(int i = 1; i <= n; ++i) {
mn[i] = min(mn[i], a[r][i]);
mx[i] = max(mx[i], a[r][i]);
}
int cur = 1, l0 = 1, l1 = 1, r0 = 0, r1 = 0;
for(int i = 1; i <= n; ++i) {
while(l0 <= r0 && mn[qmin[r0]] > mn[i]) --r0;
while(l1 <= r1 && mx[qmax[r1]] < mx[i]) --r1;
qmin[++r0] = i; qmax[++r1] = i;
while(l0 <= r0 && l1 <= r1 && cur <= i && mx[qmax[l1]] - mn[qmin[l0]] > m) {
++cur;
while(l0 <= r0 && qmin[l0] < cur) ++l0;
while(l1 <= r1 && qmax[l1] < cur) ++l1;
}
if(mx[qmax[l1]] - mn[qmin[l0]] <= m) ans = max(ans, (r - l + 1) * (i - cur + 1));
}
}
}
outn(ans);
}
}
2019牛客多校第三场 F.Planting Trees的更多相关文章
- 2019牛客多校第三场F Planting Trees(单调队列)题解
题意: 求最大矩阵面积,要求矩阵内数字满足\(max - min < m\) 思路: 枚举上下长度,在枚举的时候可以求出每一列的最大最小值\(cmax,cmin\),这样问题就变成了求一行数,要 ...
- 牛客多校第三场 F Planting Trees
牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...
- 牛客多校第三场F Planting Trees 单调栈
Planting Trees 题意 给出一个矩阵,求最大矩阵面积满足该矩阵中任2元素的绝对值之差小于等于M T<1000) (n<500)但是题目明示单组(n*3)可过 分析 又是矩阵问题 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 2019 牛客暑期多校 第三场 F Planting Trees (单调队列+尺取)
题目:https://ac.nowcoder.com/acm/contest/883/F 题意:求一个矩阵最大面积,这个矩阵的要求是矩阵内最小值与最大值差值<=m 思路:首先我们仔细观察范围,我 ...
- 2019年牛客多校第三场 F题Planting Trees(单调队列)
题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...
- 2019牛客多校第三场D BigInteger——基础数论
题意: 用 $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mo ...
- [2019牛客多校第三场][G. Removing Stones]
题目链接:https://ac.nowcoder.com/acm/contest/883/G 题目大意:有\(n\)堆石头,每堆有\(a_i\)个,每次可以选其中两堆非零的石堆,各取走一个石子,当所有 ...
- [题解]Magic Line-计算几何(2019牛客多校第三场H题)
题目链接:https://ac.nowcoder.com/acm/contest/883/H 题意: 给你偶数个点的坐标,找出一条直线将这n个点分成数量相等的两部分 并在这条直线上取不同的两个点,表示 ...
随机推荐
- kexue shangwang
根据实践,pptp.IPsec甚至OpenVPN等kexue上网法已经无法顺利翻越GFW.通过抓包可知,GFW会将pptp的握手期间的ack包吞掉,导致本地一直无法收到服务器端的响应.而OpenVPN ...
- python的进修之路
PYTHON目录篇 本篇主要在个人学习python中的一些总结性的总线,包括python的基础,python的基础进阶,除了帮助和我一样学习python的同学,也是对自己的一种要求! python基础 ...
- TCP/IP学习笔记3--传输方式的分类
网络通信中有多中分类方法: )分组较短.出错几率降低,每次重发的数据量也降低,不仅提高了可靠性,也降低了时延.缺点:(1)因为数据进入交换节点后要经历存储转发这一过程,从而引起的转发时延(包含接受分组 ...
- 了解一下JVM和GC工作机制
题外话:很久没有写博客了,事情颇多,今天空闲下来,学习一下顺便写一下自己的了解,机会总是留给有准备的人,所以平常一定要注意知识的巩固和积累.知识的深度也要有一定的理解,不比别人知道的多,公司干嘛选你? ...
- sql joins 7
sql joins 7
- [LOJ2537] [PKUWC2018] Minimax
题目链接 LOJ:https://loj.ac/problem/2537 洛谷:https://www.luogu.org/problemnew/show/P5298 Solution 不定期诈尸 好 ...
- Linux用户组笔记整理
一.Linux用户组概念 Linux用户组(group)就是具有相同操作权限范围的Linux用户管理起来: 比如有时我们要让同一类用户具有相同的权限,比如查看.修改某一文件或执行某个命令, 这时我们需 ...
- Java中使用HttpPost上传文件以及HttpGet进行API请求(包含HttpPost上传文件)
Java中使用HttpPost上传文件以及HttpGet进行API请求(包含HttpPost上传文件) 一.HttpPost上传文件 public static String getSuffix(fi ...
- iOS - swift 后使用打包动态库
WWDC2014上发布的Xcode6 beta版有了不少更新,其中令我惊讶的一个是苹果在iOS上开放了动态库,在Xcode6 Beta版的更新文档中是这样描述的: Frameworks for iOS ...
- jmeter中assertion的使用
用于检查测试中得到的响应数据等是否符合预期,用以保证性能测试过程中的数据交互与预期一致. 最新版本的3.0jmeter中有13种不同的断言: 1)BeanShell断言:针对sampler中的Bean ...