背景

上一篇我们介绍了Kafka Streams中的消息转换操作map,今天我们给出另一个经典的转换操作filter的用法。依然是结合一个具体的实例展开介绍。

演示功能说明

本篇演示filter用法,即根据给定的过滤条件或逻辑实时对每条消息进行过滤处理。今天使用的输入topic消息格式如下:

{"name": "George R. R. Martin", "title": "A Song of Ice and Fire"}

{"name": "C.S. Lewis", "title": "The Silver Chair"}

我们打算过滤出name是“George R. R. Martin”的所有消息并发送到输出topic上。

初始化项目

创建项目目录:

mkdir filter-streams
cd filter-streams/

配置项目

在filter-streams目录下创建build.gradle文件,内容如下:

buildscript {

    repositories {
jcenter()
}
dependencies {
classpath 'com.github.jengelman.gradle.plugins:shadow:4.0.2'
}
} plugins {
id 'java'
id "com.google.protob" version "0.8.10"
}
apply plugin: 'com.github.johnrengelman.shadow' repositories {
mavenCentral()
jcenter() maven {
url 'http://packages.confluent.io/maven'
}
} group 'huxihx.kafkastreams' sourceCompatibility = 1.8
targetCompatibility = '1.8'
version = '0.0.1' dependencies {
implementation 'com.google.protobuf:protobuf-java:3.0.0'
implementation 'org.slf4j:slf4j-simple:1.7.26'
implementation 'org.apache.kafka:kafka-streams:2.3.0'
implementation 'com.google.protobuf:protobuf-java:3.9.1' testCompile group: 'junit', name: 'junit', version: '4.12'
} protobuf {
generatedFilesBaseDir = "$projectDir/src/"
protoc {
artifact = 'com.google.protobuf:protoc:3.0.0'
}
} jar {
manifest {
attributes(
'Class-Path': configurations.compile.collect { it.getName() }.join(' '),
'Main-Class': 'huxihx.kafkastreams.FilteredStreamsApp'
)
}
} shadowJar {
archiveName = "kstreams-transform-standalone-${version}.${extension}"
}

然后执行下列命令下载Gradle的wrapper套件:

gradle wrapper

之后在filter-streams目录下创建一个名为configuration的文件夹用于保存我们的参数配置文件:

mkdir configuration

创建一个名为dev.properties的文件:

application.id=filtering-app
bootstrap.servers=localhost:9092

input.topic.name=publications
input.topic.partitions=1
input.topic.replication.factor=1

output.topic.name=filtered-publications
output.topic.partitions=1output.topic.replication.factor=1

创建消息Schema

下一步是创建输入消息和输出消息的schema。由于我们今天只是做filter,所以输入和输出的格式一样的,只需要创建一份schema即可。首先,在filter-streams下执行命令创建保存schema的文件夹:

mkdir -p src/main/proto

之后创建publication.proto文件,内容如下:

syntax = "proto3";

package huxihx.kafkastreams.proto;

message Publication {
string name = 1;
string title = 2;
}

保存文件之后运行下列命令去编译对应的Java类:

./gradlew build

此时,你应该可以在src/main/java/huxihx/kafkastreams/proto下看到生成的Java类:PublicationOuterClass。

创建Serdes

这一步的Serdes和上一篇中的一样,因此不再赘述,直接上代码:

mkdir -p src/main/java/huxihx/kafkastreams/serdes

在新创建的serdes文件夹下创建ProtobufSerializer.java:

package huxihx.kafkastreams.serdes;

import com.google.protobuf.MessageLite;
import org.apache.kafka.common.serialization.Serializer; public class ProtobufSerializer<T extends MessageLite> implements Serializer<T> {
@Override
public byte[] serialize(String topic, T data) {
return data == null ? new byte[0] : data.toByteArray();
}
}

然后创建ProtobufDeserializer.java:

package huxihx.kafkastreams.serdes;

import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.MessageLite;
import com.google.protobuf.Parser;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.kafka.common.serialization.Deserializer; import java.util.Map; public class ProtobufDeserializer<T extends MessageLite> implements Deserializer<T> { private Parser<T> parser; @Override
public void configure(Map<String, ?> configs, boolean isKey) {
parser = (Parser<T>) configs.get("parser");
} @Override
public T deserialize(String topic, byte[] data) {
try {
return parser.parseFrom(data);
} catch (InvalidProtocolBufferException e) {
throw new SerializationException("Failed to deserialize from a protobuf byte array.", e);
}
}
}

最后创建ProtobufSerdes.java:

package huxihx.kafkastreams.serdes;

import com.google.protobuf.MessageLite;
import com.google.protobuf.Parser;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serializer; import java.util.HashMap;
import java.util.Map; public class ProtobufSerdes<T extends MessageLite> implements Serde<T> { private final Serializer<T> serializer;
private final Deserializer<T> deserializer; public ProtobufSerdes(Parser<T> parser) {
serializer = new ProtobufSerializer<>();
deserializer = new ProtobufDeserializer<>();
Map<String, Parser<T>> config = new HashMap<>();
config.put("parser", parser);
deserializer.configure(config, false);
} @Override
public Serializer<T> serializer() {
return serializer;
} @Override
public Deserializer<T> deserializer() {
return deserializer;
}
}

开发主流程

在src/main/java/huxihx/kafkastreams下创建FilteredStreamsApp.java文件:

package huxihx.kafkastreams;

import huxihx.kafkastreams.proto.PublicationOuterClass;
import huxihx.kafkastreams.serdes.ProtobufSerdes;
import org.apache.kafka.clients.admin.AdminClient;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.Topology;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.Produced; import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import java.util.concurrent.CountDownLatch; public class FilteredStreamsApp { private Properties buildStreamsProperties(Properties envProps) {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, envProps.getProperty("application.id"));
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers"));
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
return props;
} private void preCreateTopics(Properties envProps) throws Exception {
Map<String, Object> config = new HashMap<>();
config.put("bootstrap.servers", envProps.getProperty("bootstrap.servers"));
try (AdminClient client = AdminClient.create(config)) {
Set<String> existingTopics = client.listTopics().names().get(); List<NewTopic> topics = new ArrayList<>();
String inputTopic = envProps.getProperty("input.topic.name");
if (!existingTopics.contains(inputTopic)) {
topics.add(new NewTopic(inputTopic,
Integer.parseInt(envProps.getProperty("input.topic.partitions")),
Short.parseShort(envProps.getProperty("input.topic.replication.factor")))); } String outputTopic = envProps.getProperty("output.topic.name");
if (!existingTopics.contains(outputTopic)) {
topics.add(new NewTopic(outputTopic,
Integer.parseInt(envProps.getProperty("output.topic.partitions")),
Short.parseShort(envProps.getProperty("output.topic.replication.factor"))));
} client.createTopics(topics);
}
} private Properties loadEnvProperties(String filePath) throws IOException {
Properties envProps = new Properties();
try (FileInputStream input = new FileInputStream(filePath)) {
envProps.load(input);
}
return envProps;
} private Topology buildTopology(Properties envProps, final Serde<PublicationOuterClass.Publication> publicationSerde) {
final StreamsBuilder builder = new StreamsBuilder(); final String inputTopic = envProps.getProperty("input.topic.name");
final String outputTopic = envProps.getProperty("output.topic.name"); builder.stream(inputTopic, Consumed.with(Serdes.String(), publicationSerde))
.filter((key, publication) -> "George R. R. Martin".equals(publication.getName()))
.to(outputTopic, Produced.with(Serdes.String(), publicationSerde));
return builder.build();
} public static void main(String[] args) throws Exception {
if (args.length < 1) {
throw new IllegalArgumentException("Environment configuration file must be specified.");
} FilteredStreamsApp app = new FilteredStreamsApp();
Properties envProps = app.loadEnvProperties(args[0]);
Properties streamProps = app.buildStreamsProperties(envProps); app.preCreateTopics(envProps); Topology topology = app.buildTopology(envProps, new ProtobufSerdes<>(PublicationOuterClass.Publication.parser())); final KafkaStreams streams = new KafkaStreams(topology, streamProps);
final CountDownLatch latch = new CountDownLatch(1); Runtime.getRuntime().addShutdownHook(new Thread("streams-jvm-shutdown-hook") {
@Override
public void run() {
streams.close();
latch.countDown();
}
}); try {
streams.start();
latch.await();
} catch (Exception e) {
System.exit(1);
}
System.exit(0);
}
}

编写测试Producer和Consumer

在src/main/java/huxihx/kafkastreams/tests/TestProducer.java和TestConsumer.java,内容分别如下:

package huxihx.kafkastreams.tests;

import huxihx.kafkastreams.proto.PublicationOuterClass;
import huxihx.kafkastreams.serdes.ProtobufSerializer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Arrays;
import java.util.List;
import java.util.Properties; public class TestProducer { // 测试输入事件
private static final List<PublicationOuterClass.Publication> TEST_PUBLICATIONS = Arrays.asList(
PublicationOuterClass.Publication.newBuilder()
.setName("George R. R. Martin").setTitle("A Song of Ice and Fire").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("C.S. Lewis").setTitle("The Silver Chair").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("C.S. Lewis").setTitle("Perelandra").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("George R. R. Martin").setTitle("Fire & Blood").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("J. R. R. Tolkien").setTitle("The Hobbit").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("J. R. R. Tolkien").setTitle("The Lord of the Rings").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("George R. R. Martin").setTitle("A Dream of Spring").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("J. R. R. Tolkien").setTitle("The Fellowship of the Ring").build(),
PublicationOuterClass.Publication.newBuilder()
.setName("George R. R. Martin").setTitle("The Ice Dragon").build()); public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", new ProtobufSerializer<PublicationOuterClass.Publication>().getClass()); try (final Producer<String, PublicationOuterClass.Publication> producer = new KafkaProducer<>(props)) {
TEST_PUBLICATIONS.stream()
.map(publication -> new ProducerRecord<String, PublicationOuterClass.Publication>("publications", publication))
.forEach(producer::send);
}
}
}
package huxihx.kafkastreams.tests;

import com.google.protobuf.Parser;
import huxihx.kafkastreams.proto.PublicationOuterClass;
import huxihx.kafkastreams.serdes.ProtobufDeserializer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.StringDeserializer; import java.time.Duration;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties; public class TestConsumer { public static void main(String[] args) {
// 为输出事件构造protobuf deserializer
Deserializer<PublicationOuterClass.Publication> deserializer = new ProtobufDeserializer<>();
Map<String, Parser<PublicationOuterClass.Publication>> config = new HashMap<>();
config.put("parser", PublicationOuterClass.Publication.parser());
deserializer.configure(config, false); Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test-group");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "earliest");
KafkaConsumer<String, PublicationOuterClass.Publication> consumer = new KafkaConsumer<>(props, new StringDeserializer(), deserializer);
consumer.subscribe(Arrays.asList("filtered-publications"));
while (true) {
ConsumerRecords<String, PublicationOuterClass.Publication> records = consumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, PublicationOuterClass.Publication> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}

测试

首先我们运行下列命令构建项目:

./gradlew shadowJar

然后启动Kafka集群,之后运行Kafka Streams应用:

java -jar build/libs/kstreams-transform-standalone-0.0.1.jar configuration/dev.properties

然后启动TestProducer发送测试事件:

java -cp build/libs/kstreams-transform-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer

最后启动TestConsumer验证Kafka Streams过滤出了指定的Publication消息:

java -cp build/libs/kstreams-transform-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestConsumer

.......

offset = 0, key = null, value = name: "George R. R. Martin"
title: "A Song of Ice and Fire"

offset = 1, key = null, value = name: "George R. R. Martin"
title: "Fire & Blood"

offset = 2, key = null, value = name: "George R. R. Martin"
title: "A Dream of Spring"

offset = 3, key = null, value = name: "George R. R. Martin"
title: "The Ice Dragon"

总结

下一篇介绍rekey的用法,即实时修改消息的Key值~~

Kafka Streams开发入门(2)的更多相关文章

  1. Kafka Streams开发入门(5)

    1. 背景 上一篇演示了split操作算子的用法.今天展示一下split的逆操作:merge.Merge算子的作用是把多股实时消息流合并到一个单一的流中. 2. 功能演示说明 假设我们有多个Kafka ...

  2. Kafka Streams开发入门(4)

    背景 上一篇演示了filter操作算子的用法.今天展示一下如何根据不同的条件谓词(Predicate)将一个消息流实时地进行分流,划分成多个新的消息流,即所谓的流split.有的时候我们想要对消息流中 ...

  3. Kafka Streams开发入门(3)

    背景 上一篇我们介绍了Kafka Streams中的消息过滤操作filter,今天我们展示一个对消息进行转换Key的操作,依然是结合一个具体的实例展开介绍.所谓转换Key是指对流处理中每条消息的Key ...

  4. Kafka Streams开发入门(1)

    背景 最近发现Confluent公司在官网上发布了Kafka Streams教程,共有10节课,每节课给出了Kafka Streams的一个功能介绍.这个系列教程对于我们了解Kafka Streams ...

  5. Kafka .net 开发入门

    Kafka安装 首先我们需要在windows服务器上安装kafka以及zookeeper,有关zookeeper的介绍将会在后续进行讲解. 在网上可以找到相应的安装方式,我采用的是腾讯云服务器,借鉴的 ...

  6. 大全Kafka Streams

    本文将从以下三个方面全面介绍Kafka Streams 一. Kafka Streams 概念 二. Kafka Streams 使用 三. Kafka Streams WordCount   一. ...

  7. Kafka Streams | 流,实时处理和功能

    1.目标 在我们之前的Kafka教程中,我们讨论了Kafka中的ZooKeeper.今天,在这个Kafka Streams教程中,我们将学习Kafka中Streams的实际含义.此外,我们将看到Kaf ...

  8. 七 Kafka Streams VS Consumer API

    1 kafka Streams:   概念: 处理和分析储存在Kafka中的数据,并把处理结果写回Kafka或发送到外部系统的最终输出点,它建立在一些很重要的概念上,比如事件时间和消息时间的准确区分, ...

  9. Kafka入门实战教程(7):Kafka Streams

    1 关于流处理 流处理平台(Streaming Systems)是处理无限数据集(Unbounded Dataset)的数据处理引擎,而流处理是与批处理(Batch Processing)相对应的.所 ...

随机推荐

  1. SparkSQL 中 RDD 、DataFrame 、DataSet 三者的区别与联系

    一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容      Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by s ...

  2. 【LG2567】[SCOI2010]幸运数字

    [LG2567][SCOI2010]幸运数字 题面 洛谷 题目大意: 问你区间\([L,R](1\leq L\leq R\leq 10^{10})\)中有几个数是仅由\(6,8\)组成的数的倍数. 题 ...

  3. manacher算法笔记

    模板 [模板]manacher算法 不妨先只考虑如何求长度为奇数的回文串 记\(P[i]\)表示以\(i\)为中心最多向两边扩展几个字符,满足回文 如串\(ababa\), \(P[1]=0,P[2] ...

  4. 使用kubernetes管理包的常用命令

    常用命令是: ## 获取指定命名空间(rubikt)下所有的部署的服务 kubectl.exe get deployments --namespace rubikt ## 获取制定命名空间(rubik ...

  5. 华为鸿蒙OS发布!方舟支持混合编译,终将可替换安卓?

    前言 有关于鸿蒙的消息之前也有说过,就在昨天下午,华为举行了2019开发大会,正式推出了鸿蒙os系统(Harmony).其相关负责人表示,也是基于微软内核的全场景分布式OS   鸿蒙凭借微内核的优势, ...

  6. java并发编程(九)ThreadLocal & InheritableThreadLocal

    参考文档: https://blog.csdn.net/u012834750/article/details/71646700 threadlocal内存泄漏:http://www.importnew ...

  7. mysql 数据库中的每张表加同一个字段(避免重复加)

    DROP PROCEDURE IF EXISTS testEndHandle; DELIMITER $$ CREATE PROCEDURE testEndHandle() BEGIN DECLARE ...

  8. windows server 2008的系统备份

    添加windows server backup功能,打开运行“服务器管理器”->“功能”选项, 点击“添加功能”,选择“Windows Server Backup”,选择下一步安装该功能. 点击 ...

  9. myeclipse导入项目后中文乱码

    window----preference ----general-----workspace-------text file encoding 可以多测试下:gbk,utf-8.....

  10. phpcms发布文章自定义字段

    phpcms发布文章自定义字段1 进入后台 模型管理 新建模型 里面可以自定义字段了