MongoDB Map Reduce

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

MapReduce 命令

以下是MapReduce的基本语法:

>db.collection.mapReduce(
function() {emit(key,value);}, //map 函数
function(key,values) {return reduceFunction}, //reduce 函数
{
out: collection,
query: document,
sort: document,
limit: number
}
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将 key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

以下实例在集合 orders 中查找 status:"A" 的数据,并根据 cust_id 来分组,并计算 amount 的总和。


使用 MapReduce

考虑以下文档结构存储用户的文章,文档存储了用户的 user_name 和文章的 status 字段:

>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"active"
})
WriteResult({ "nInserted" : 1 })

现在,我们将在 posts 集合中使用 mapReduce 函数来选取已发布的文章(status:"active"),并通过user_name分组,计算每个用户的文章数:

>db.posts.mapReduce(
function() { emit(this.user_name,1); },
function(key, values) {return Array.sum(values)},
{
query:{status:"active"},
out:"post_total"
}
)

以上 mapReduce 输出结果为:

{
"result" : "post_total",
"timeMillis" : 23,
"counts" : {
"input" : 5,
"emit" : 5,
"reduce" : 1,
"output" : 2
},
"ok" : 1
}

结果表明,共有 5 个符合查询条件(status:"active")的文档, 在map函数中生成了 5 个键值对文档,最后使用reduce函数将相同的键值分为 2 组。

具体参数说明:

  • result:储存结果的collection的名字,这是个临时集合,MapReduce的连接关闭后自动就被删除了。
  • timeMillis:执行花费的时间,毫秒为单位
  • input:满足条件被发送到map函数的文档个数
  • emit:在map函数中emit被调用的次数,也就是所有集合中的数据总量
  • ouput:结果集合中的文档个数(count对调试非常有帮助)
  • ok:是否成功,成功为1
  • err:如果失败,这里可以有失败原因,不过从经验上来看,原因比较模糊,作用不大

使用 find 操作符来查看 mapReduce 的查询结果:

>db.posts.mapReduce(
function() { emit(this.user_name,1); },
function(key, values) {return Array.sum(values)},
{
query:{status:"active"},
out:"post_total"
}
).find()

以上查询显示如下结果:

{ "_id" : "mark", "value" : 4 }
{ "_id" : "runoob", "value" : 1 }

用类似的方式,MapReduce可以被用来构建大型复杂的聚合查询。

Map函数和Reduce函数可以使用 JavaScript 来实现,使得MapReduce的使用非常灵活和强大。

 

1 篇笔记 写笔记

  1. #1

    forthxu

    for***u@gmail.com

    参考地址

    2

    临时集合参数是这样写的

    out: { inline: 1 }

    设置了 {inline:1} 将不会创建集合,整个 Map/Reduce 的操作将会在内存中进行。

    注意,这个选项只有在结果集单个文档大小在16MB限制范围内时才有效。

     db.users.mapReduce(map,reduce,{out:{inline:1}});
    
    转载自:https://www.runoob.com/mongodb/mongodb-map-reduce.html

MongoDB Map Reduce(转载)的更多相关文章

  1. 记一次MongoDB Map&Reduce入门操作

    需求说明 用Map&Reduce计算几个班级中,每个班级10岁和20岁之间学生的数量: 需求分析 学生表的字段: db.students.insert({classid:1, age:14, ...

  2. mongodb Map/reduce测试代码

    private void AccountInfo() { ls.Clear(); DateTime dt = DateTime.Now.Date; IMongoQuery query = Query& ...

  3. MongoDB Map Reduce

    介绍 Map-Reduce是一种计算模型,简单的说就是将大批量的工作分解(MAP)执行,然后再将结果合并成最终结果(REDUCE). MongoDB提供的Map-Reduce非常灵活,对于大规模数据分 ...

  4. map reduce

    作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的 ...

  5. ODPS 下一个map / reduce 准备

    阿里接到一个电话说练习和比赛智能二选一, 真的很伤心, 练习之前积极老龄化的权利. 要总结ODPS下一个 写map / reduce 并进行购买预测过程. 首先这里的hadoop输入输出都是表的形式, ...

  6. Demo of Python "Map Reduce Filter"

    Here I share with you a demo for python map, reduce and filter functional programming thatowned by m ...

  7. 分布式基础学习(2)分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...

  8. Hadoop学习笔记2 - 第一和第二个Map Reduce程序

    转载请标注原链接http://www.cnblogs.com/xczyd/p/8608906.html 在Hdfs学习笔记1 - 使用Java API访问远程hdfs集群中,我们已经可以完成了访问hd ...

  9. 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...

随机推荐

  1. 用结构体解析Pascal字符串

    来源:https://www.cnblogs.com/qiuyuwutong/p/8708844.html 1.什么是柔性数组? 柔性数组既数组大小待定的数组, C语言中结构体的最后一个元素可以是大小 ...

  2. Shell获取指定区间随机未占用的端口号

    说明 最近在写Jenkins自动运维的脚本,由于是用的docker,部署的时候启动容器端口号冲突会导致部署失败,用的微服务也不在乎端口什么的,只求部署成功,所以想了很久,参考了一些文章,还有运维大哥的 ...

  3. python 搭建 websocket server 发送 sensor 数据

    搞了几天,顺便把代码贴这里,需要的 python 包: gevent,gevent-websocket,bottle,wiringpi-python 简单说明: - gevent 提供了支持 conc ...

  4. 一个 Java 正则表达式例子

    今天在项目里看到用 Python 正则表达式的时候,用到 group,没有仔细看.正好学习 Java 正则表达式,对 group 多留意了一下. 上代码: import java.util.regex ...

  5. 重点|183道Java面试题可以说很详细了

    <p style="text-align: right;"><span style="font-size: 14px;color: rgb(136, 1 ...

  6. 封装:Cmd命令调用和常用命令

    原文:封装:Cmd命令调用和常用命令 一.Cmd命令调用方法 1.静态方法调用 class Program { static void Main(string[] args) { // Todo :打 ...

  7. 当Windows操作系统关机时,不会执行Windows Service的OnStop方法(转载)

    Windows Service OnStop when computer shutdown 问: I'm writing a Windows Service in C#. I want to take ...

  8. Django---图书管理系统,多对多(ManyToMany),request获取多个值getlist(),反查(被关联的对象.author_set.all)

    Django---图书管理系统,多对多(ManyToMany),request获取多个值getlist(),反查(被关联的对象.author_set.all) 一丶多对多查询 表建立多对多关系的方式 ...

  9. vue组件4 利用slot将内容传递给组件

    除了将数据作为prop传入到组件中,vue也允许传入HTML 父组件中的子组件:<custom-button>点我<custom-button/> custom-button子 ...

  10. 全面了解Cookie

    一.Cookie的出现 浏览器和服务器之间的通信少不了HTTP协议,但是因为HTTP协议是无状态的,所以服务器并不知道上一次浏览器做了什么样的操作,这样严重阻碍了交互式Web应用程序的实现. 针对上述 ...