工作中需要用到cvxopt,cvxopt安装有坑,大家注意下.
1.首先一定要卸载numpy,无论是直接安装的,还是anaconda安装的,主要是必须用whl安装numpy才不会有包的冲突
2.二次规划包的使用
二次规划的标准形式如下

Python 代码如下

from cvxopt import matrix
import cvxopt.solvers as sol
result = sol.qp(P, Q, G, h, A, b)

问题描述:
    在实际生活中,我们经常会遇到一些优化问题,简单的线性规划可以作图求解,但是对于目标函数包含二次项时,则需要另觅它法在金融实践中,马科维茨均方差模型就有实际的二次优化需求

作为金融实践中常用的方法,本篇将对CVXOPT中求解二次规划的问题进行举例详细说明,关于该方法在均方差优化中的实践应用,参见后续发帖

1、二次规划问题的标准形式

min12xTPx+qTx
s.t.Gx≤h
Ax=b

上式中,x为所要求解的列向量,xT表示x的转置
接下来,按步骤对上式进行相关说明:
    上式表明,任何二次规划问题都可以转化为上式的结构,事实上用cvxopt的第一步就是将实际的二次规划问题转换为上式的结构,写出对应的P、q、G、h、A、b目标函数若为求max,可以通过乘以−1,将最大化问题转换为最小化问题Gx≤b表示的是所有的不等式约束,同样,若存在诸如x≥0的限制条件,也可以通过乘以−1转换为"≤"的形式Ax=b表示所有的等式约束

2、以一个标准的例子进行过程说明

min(x,y)12x2+3x+4y
s.t.x,y≥0
x+3y≥15
2x+5y≤100
3x+4y≤80

例子中,需要求解的是x,y,我们可以把它写成向量的形式,同时,也需要将限制条件按照上述标准形式进行调整,用矩阵形式表示,如下所示:

min(x,y)12[x\y]T[10\00][x\y]+[3\4]T[x\y]
[−10 0−1\-1−3 25 34][x\y]≤[0\0\-15\100\80]

如上所示,目标函数和限制条件均转化成了二次规划的标准形式,这是第一步,也是最难的一步,接下来的事情就简单了对比上式和标准形式,不难得出:P=[10\00],q=[3\4],G=[−10 0−1\-1−3 25 34],h=[0\0\-15\100\80]
接下来就是几行简单的代码,目的是告诉计算机上面的参数具体是什么

from cvxopt import solvers, matrix
P = matrix([[1.0,0.0],[0.0,0.0]]) # matrix里区分int和double,所以数字后面都需要加小数点
q = matrix([3.0,4.0])
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])
h = matrix([0.0,0.0,-15.0,100.0,80.0])
sol = solvers.qp(P,q,G,h) # 调用优化函数solvers.qp求解
print sol['x'] # 打印结果,sol里面还有很多其他属性,读者可以自行了解

pcost dcost gap pres dres

0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01
1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00
2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01
4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01
5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16
6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16
7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16
8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]

看了上面的代码,是不是觉得很简单。因为难点不在代码,而是在于将实际优化问题转化为标准形式的过程在上面的例子中,并没有出现等号,当出现等式约束时,过程一样,找到A,b,然后运行代码 sol = solvers.qp(P,q,G,h,A,b) 即可求解
扩展:上述定义各个矩阵参数用的是最直接的方式,其实也可以结合Numpy来定义上述矩阵

from cvxopt import solvers, matrix
import numpy as np
P = matrix(np.diag([1.0,0])) # 对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大)
q = matrix(np.array([3.0,4]))
G = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]]))
h = matrix(np.array([0.0,0,-15,100,80]))
sol = solvers.qp(P,q,G,h)

pcost dcost gap pres dres

0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01
1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00
2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01
4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01
5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16
6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16
7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16
8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16
Optimal solution found.

先写到这吧,关于二次规划在均方差优化中的实践应用,参见后续发帖,欢迎交流~~出处
发布于 2018-05-11

在Python中利用CVXOPT求解二次规划问题的更多相关文章

  1. Python中利用函数装饰器实现备忘功能

    Python中利用函数装饰器实现备忘功能 这篇文章主要介绍了Python中利用函数装饰器实现备忘功能,同时还降到了利用装饰器来检查函数的递归.确保参数传递的正确,需要的朋友可以参考下   " ...

  2. python中利用matplotlib绘图可视化知识归纳

    python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...

  3. Python中利用原始套接字进行网络编程的示例

    Python中利用原始套接字进行网络编程的示例 在实验中需要自己构造单独的HTTP数据报文,而使用SOCK_STREAM进行发送数据包,需要进行完整的TCP交互. 因此想使用原始套接字进行编程,直接构 ...

  4. python中利用队列asyncio.Queue进行通讯详解

    python中利用队列asyncio.Queue进行通讯详解 本文主要给大家介绍了关于python用队列asyncio.Queue通讯的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细 ...

  5. (数据科学学习手札145)在Python中利用yarl轻松操作url

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,在诸如网络爬虫.web应用开发 ...

  6. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  7. python中利用正则表达式匹配ip地址

    现在有一道题目,要求利用python中re模块来匹配ip地址,我们应如何着手? 首先能想到的是ip地址是数字,正则表达式是如何匹配数字的呢? \d或[0-9] 对于这个问题,不要一下子上来就写匹配模式 ...

  8. 「Python实用秘技11」在Python中利用ItsDangerous快捷实现数据加密

    本文完整示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/PythonPracticalSkills 这是我的系列文章「Python实用秘技」的第11 ...

  9. python中利用redis构建任务队列(queue)

    Python中的使用标准queue模块就可以建立多进程使用的队列,但是使用redis和redis-queue(rq)模块使这一操作更加简单. Part 1. 比如首先我们使用队列来简单的储存数据:我们 ...

随机推荐

  1. Windows Azure 故障转移模式及高可用个模式探讨!

     眼下国内非常多用户对于云服务的可用性存在误解,什么样子的误解呢?比方某云服务商,在华南某地有一个机房,在华东有一个机房. 这个客户就提到一个需求,你提供的99%可用性的概念是什么意思呢?是不是我 ...

  2. kettle_删除“共享输出表”引发的错误

    原创作品.出自 "深蓝的blog" 博客.欢迎转载,转载时请务必注明出处,否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlong ...

  3. 每日一支TED——弗兰斯·兰庭:为动物发声的摄影作品——2015年6月3日

    今天是听TED的第11天,从今天開始简单写一下听TED的感受! 刚把得! 弗兰斯·兰庭从一个部落得到一个思想说:全部的动物都是一样的.虽然他们的外形不一样.可是内在确实一样的,他们在外面伪装,可是他们 ...

  4. Ubuntu 13.10 安装 TeX Live 2013

    注:笔者也是刚刚接触TeX系统,水平有限,若有疏漏之处还望指正. 中文解决方案 对于LaTeX中文排版,比较方便有这样的几种解决方案:LaTeX+CJK / LaTeX+XeTeX / CTeX.其中 ...

  5. VIM学习笔记 比较文件(diff)

    比较 可以从命令行调用以下命令,来打开两个文件进行比较: vim -d file1 file2 如果已经打开了文件file1,那么可以在Vim中用以下命令,再打开另一个文件file2进行比较: :di ...

  6. error: 'Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (2)'

    [root@luozhonghua ~]#   /usr/bin/mysqladmin -u root password 'aaaaaa' /usr/bin/mysqladmin: connect t ...

  7. C/C++ 答疑解问

    1. sizeof(string)的大小 string属于类,类的大小就是类中成员变量(非静态)加上指向虚函数表的指针以及指向虚基类表的指针加起来的和.因为string是一个模板类,受具体的实现来决定 ...

  8. P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 状压dp

    这个状压dp其实很明显,n < 18写在前面了当然是状压.状态其实也很好想,但是有点问题,就是如何判断空间是否够大. 再单开一个g数组,存剩余空间就行了. 题干: 题目描述 A little k ...

  9. bzoj1407

    扩展欧几里得 我们发现其实就是两个野人在自己的寿命内不会相遇,或者永远不会相遇,那么我们枚举m,然后枚举两个人,看是否符合条件 扩展欧几里得ax+by=c,这里c不能取模,a能取模,具体不想了 #in ...

  10. Coursera Algorithms week3 快速排序 练习测验: Decimal dominants(寻找出现次数大于n/10的元素)

    题目原文: Decimal dominants. Given an array with n keys, design an algorithm to find all values that occ ...