hdu1569 方格取数 求最大点权独立集
题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和。思路:建图,相邻的点有一条边,则建立了一个二分图,求最大点权独立集(所取点两两无公共边,权值和最大),问题转化为求总权和-最小点权覆盖集(点集I覆盖所有边,点权之和最小),(对应于原题,就是求拿掉最小点集,这些点覆盖所有边,拿掉后,每个点必然两两不相邻,否则:假设u,v相邻,则u->v这条边未被覆盖,矛盾),在建立超级源汇点s,t,s连向所有X中的点(设二分图G(X,Y)),Y联向t,,权值为点权,原来X->Y的所有边权值改为inf,问题转化为:求s->t最小割(一组权值和最小的割边集,去掉后s->t不连通),而每去掉一条割边,相当于去掉原图一个点,这个点必然牵着下面X->Y的边,故最小割即为最小点权覆盖集!(部分证明:摘自某大牛:可以这样理解:X到Y的边权为INF,自然不会成为最小割中的边,那就只有可能
是S到X和Y到T中的边,而:S到X中点x的边e1, 权为点x的点权,点x和Y中的所有临边e2,都需要受
到e1的流量的限制,同样,X到Y中点y的所有边也会受到点y到T的容量限制。这样求得割就能保证覆
盖掉所有的边。
我们可以用反证法证明一下:假设有边<x, y>没有被覆盖掉,则边<S, x>流量为0且边<y, T>流量为0,
而<x, y>流量为INF,自然可以找到一条S到T的增流路径<S, x, y, T>,与以求得流为最大流相矛盾,
则可以说明,在最大流的情况下,所有的边都已经被覆盖掉。)
建图这里注意一下:二分图,只有X->Y有连边!!!
结论(二分图):最小点权覆盖集=最小割=最大流; 最大点权覆盖集=总权和-最小点权覆盖集
PS:网络流博大精深。。。。。
#include<iostream> //15ms
#include<queue>
#include<cstdio>
using namespace std;
int n,m,nume;const int inf=0x3f3f3f3f; int e[40000][3];
int level[2509];int vis[2509]; int head[2509];
bool bfs() //dinic
{
for(int i=0;i<=n*m+1;i++)
vis[i]=level[i]=0;
queue<int>q; q.push(0); vis[0]=1;
while(!q.empty())
{
int cur=q.front(); q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{ int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
level[v]=level[cur]+1;
if(v==m*n+1)return 1;
vis[v]=1;
q.push(v);
}
}
}
return vis[n*m+1];
}
int dfs(int u,int minf)
{
if(u==n*m+1||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{ int v=e[i][0];
if(level[v]==level[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f; e[i^1][2]+=f;
minf-=f; sumf+=f;
}
}
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())
{
sum+=dfs(0,inf);
}
return sum;
}
int a[52][52];
void addegde(int u,int v,int w)
{
e[nume][0]=v;e[nume][1]=head[u];head[u]=nume;
e[nume++][2]=w;
e[nume][0]=u;e[nume][1]=head[v];head[v]=nume;
e[nume++][2]=0;
}
int main()
{
while(scanf("%d",&n,&m)!=EOF)
{
for(int i=0;i<=n*m+1;i++)
head[i]=-1;
int temp,sum=0; nume=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%d",&temp);
a[i][j]=temp; sum+=temp;
if((i+j)%2)addegde(0,(i-1)*m+j,temp);
else addegde((i-1)*m+j,n*m+1,temp);
}
for(int i=1;i<=n;i++) //建图这里注意一下:二分图,只有X->Y有连边!!!
for(int j=1;j<=m;j++)
{
if((i+j)%2==0)continue;
if(i-1>=1)
addegde((i-1)*m+j,(i-2)*m+j,inf);
if(j+1<=m)
addegde((i-1)*m+j,(i-1)*m+j+1,inf);
if(i+1<=n)
addegde((i-1)*m+j,i*m+j,inf);
if(j-1>=1)
addegde((i-1)*m+j,(i-1)*m+j-1,inf);
}
int ans=dinic();
printf("%d\n",sum-ans);
}
return 0;
}
hdu1569 方格取数 求最大点权独立集的更多相关文章
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
- HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...
- HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...
- TZOJ 3665 方格取数(2)(最大点权独立集)
描述 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 输入 包括多个测试实例 ...
- hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...
- HDU1569 方格取数(2) —— 二分图点带权最大独立集、最小割最大流
题目链接:https://vjudge.net/problem/HDU-1569 方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- hdu1565+hdu1569(最大点权独立集)
传送门:hdu1565 方格取数(1) 传送门:hdu1569 方格取数(2) 定理:1. 最小点权覆盖集=最小割=最大流2. 最大点权独立集=总权-最小点权覆盖集 步骤: 1. 先染色,取一个点染白 ...
- HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)
题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- HDU 1565 最大点权独立集
首先要明白图论的几个定义: 点覆盖.最小点覆盖: 点覆盖集即一个点集,使得所有边至少有一个端点在集合里.或者说是“点” 覆盖了所有“边”.. 最小点覆盖(minimum vertex covering ...
随机推荐
- table 会有默认的外边框,内部会有分割线
.表格中边框的显示 只显示上边框 <table frame=above> 只显示下边框 <table frame=below> 只显示左.右边框 <table frame ...
- python已安装好第三方库,pycharm import时仍标红的解决办法
pip install pymysql之后导入import pymysql时候标红 发现 pymysql下方还是标红,不能正常导入 可以试用一下以下的办法 解决办法: 首先打开 Settings找到P ...
- 使用xcode workspace 多个project协同工作
一般的某个应用单独新建一个 project 就可以了,然后把所有的程序文件都放在里面,这个可以满足大部分普通的需求,但是有时候,项目有可能要使用其他的项目文件,或者引入其他的静态库文件,这个时候 wo ...
- UIScrollView和MultiThreading、UITextField、Keyboard
- xhEditor编辑器上传图片到 OSS
前段时间,公司在项目上用到了xhEditor编辑器来给用户做一个上传图片的功能当时做的时候觉得很有意思,想想 基本的用户图片上传到自己服务器,还有点小占地方: 后来....然后直接上传到阿里云 .接下 ...
- std::ios::sync_with_stdio和tie()——给cin加速
平时在Leetcode上刷题的时候,总能看到有一些题中最快的代码都有这样一段 static const auto init = []() { std::ios::sync_with_stdio(fal ...
- Web框架之Django_05 模型层了解(单表查询、多表查询、聚合查询、分组查询)
摘要: 单表查询 多表查询 聚合查询 分组查询 一.Django ORM 常用字段和参数: 常用字段:#AutoFieldint自增列,必须填入参数primary_key = True,当model中 ...
- Android兼容性测试GTS-环境搭建、测试执行、结果分析
GTS的全称是Google Mobile Services Test Suite,所谓的Google Mobile Services即谷歌移动服务,是谷歌开发并推动Android的动力,也是Andro ...
- python基础学习笔记——闭包
闭包这个概念好难理解,身边朋友们好多都稀里糊涂的,稀里糊涂的林老冷希望写下这篇文章能够对稀里糊涂的伙伴们有一些帮助~ 请大家跟我理解一下,如果在一个函数的内部定义了另一个函数,外部的我们叫他外函数,内 ...
- Hibernate框架的主键生成策略
在Hibernate中,id元素的<generator>子元素用于生成持久化类的对象的唯一标识符,也就是主键.Hibernate框架中定义了许多主键生成策略类,也叫生成器类.所有的生成器类 ...