题目链接:http://poj.org/problem?id=2135

Farm Tour
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17672   Accepted: 6851

Description

When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect
the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000.

To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.

He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

Input

* Line 1: Two space-separated integers: N and M.

* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length. 

Output

A single line containing the length of the shortest tour. 

Sample Input

4 5
1 2 1
2 3 1
3 4 1
1 3 2
2 4 2

Sample Output

6

Source

题解:

把问题转化为:最小费用最大流。

1.每一条边其容量为1, 其费用为距离。

2.可知题目要求两条不同的路径,那么对于这个网络流图,就是要求:在流量为2的状态下,1到n的最小费用。

3.那么怎么转化为最小费用最大流呢?设一个超级源点和一个超级汇点。且超级源点到1的容量为2,费用为0, n到超级汇点的容量为2,费用为0;且题目说明了必定有解,那么在这个条件下求超级源点到超级汇点的最小费用最大流,最大流就只能为2了。所以最小费用即为题目所求。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e3+; struct Edge
{
int to, next, cap, flow, cost;
}edge[<<];
int tot, head[MAXN];
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N; void init(int n)
{
N = n;
tot = ;
memset(head, -, sizeof(head));
} void add(int u, int v, int cap, int cost)
{
edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost;
edge[tot].flow = ; edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].cost = -cost;
edge[tot].flow = ; edge[tot].next = head[v]; head[v] = tot++;
} bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i<=N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
} dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost)
{
dis[v] = dis[u]+edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
} int minCostMaxFlow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min = edge[i].cap-edge[i].flow;
}
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost*Min;
}
flow += Min;
}
return flow;
} int main()
{
int n, m;
scanf("%d%d",&n,&m);
init(n+);
for(int i = ; i<=m; i++)
{
int u, v, c;
scanf("%d%d%d",&u,&v,&c);
add(u,v,,c); //双向图,容量为1,花费即为距离c
add(v,u,,c);
}
int start = , end = n+;
add(start, , , ); //超级源点到1的边,单向。容量为2, 花费为0
add(n, end, , ); //n到超级汇点的边,单向。容量为2, 花费为0
int ans;
minCostMaxFlow(start, end, ans);
printf("%d\n", ans);
return ;
}

POJ2135 Farm Tour —— 最小费用最大流的更多相关文章

  1. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  2. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

  3. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

  4. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

  5. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

  6. [poj] 1235 Farm Tour || 最小费用最大流

    原题 费用流板子题. 费用流与最大流的区别就是把bfs改为spfa,dfs时把按deep搜索改成按最短路搜索即可 #include<cstdio> #include<queue> ...

  7. POJ-2135 Farm Tour---最小费用最大流模板题(构图)

    题目链接: https://vjudge.net/problem/POJ-2135 题目大意: 主人公要从1号走到第N号点,再重N号点走回1号点,同时每条路只能走一次. 这是一个无向图.输入数据第一行 ...

  8. poj2135 Farm Tour(费用流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  9. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

随机推荐

  1. 计算系数(codevs 1137)

    题目描述 Description 给定一个多项式(ax + by)^k,请求出多项式展开后x^n y^m项的系数. 输入描述 Input Description 共一行,包含 5 个整数,分别为a,b ...

  2. EMD距离

    一.场景介绍   最近在研究一个场景:图片质量评分,给一张图片一个预测的分数.   里面提到了用 EMD(Earth Mover’s Distance)算法来评估两张图片之间的分布距离.下面主要讲解下 ...

  3. ActivityGroup中监听返回按键

    如果你想使用ActivityGroup来统一管理Activity的话,当然首先这是一种很好的方法,但是如果你想在ActivityGroup里面拦截返回按键来进行统一管理的话,直接覆写onKeyDown ...

  4. mac 获得进程信息的方法

    NSProcessInfo可以获得当前进程的信息.获得所有活动进程信息可以尝试使用下面的方法. 进程的信息可以通过ps命令得到也可以通过sysctl方法得到. 但是我总是不能获取进程的流量信息,关于这 ...

  5. OO第三单元作业小结

    一.JML理论基础及应用工具链情况 理论基础 1.JML表达式 \result:表示方法执行后的返回值. \old(expr):表示一个表达式expr在相应方法执行前的取值. \foall:全称量词修 ...

  6. mysqldump 把数据库备份到异地的服务器

    原文:http://www.open-open.com/code/view/1420121471484 这个方法可以把通过mysqldump 把本地数据库备份到远端主机, 中间数据的传输通过 ssh ...

  7. javaproject积累——树形结构的操作

    近期一直被树形结构整的非常头大,又是递归.又是循环.可是,好在我们在经历了千辛万苦后.最终弄出来了.事实上就是组织机构的常规操作,有些是我们过度设计.有些是我们想错了.而对数的逻辑读取,我们就属于想错 ...

  8. CodeForces 321A Ciel and Robot(数学模拟)

    题目链接:http://codeforces.com/problemset/problem/321/A 题意:在一个二维平面中,開始时在(0,0)点,目标点是(a.b),问能不能通过反复操作题目中的指 ...

  9. 天津政府应急系统之GIS一张图(arcgis api for flex)解说(二)鹰眼模块

    解说GIS功能模块实现之前,先大概说一下flexviewer的核心配置文件config.xml,系统额GIS功能widget菜单布局.系统的样式.地图资源等等都是在这里配置的,这里对flexviewe ...

  10. 消息列队 分布式事务解办法 celery flower使用总结

    前言 项目中有场景 需要用到 分布式事务业务,经过查下资料把学习相关笔记做记录方便他人或者自己后面查看. 场景 在网站A业务中有个操作 是 要在网站B中新建一台服务器跑业务.A中执行B中的接口创建服务 ...