题目链接:http://poj.org/problem?id=2135

Farm Tour
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17672   Accepted: 6851

Description

When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect
the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000.

To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.

He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

Input

* Line 1: Two space-separated integers: N and M.

* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length. 

Output

A single line containing the length of the shortest tour. 

Sample Input

4 5
1 2 1
2 3 1
3 4 1
1 3 2
2 4 2

Sample Output

6

Source

题解:

把问题转化为:最小费用最大流。

1.每一条边其容量为1, 其费用为距离。

2.可知题目要求两条不同的路径,那么对于这个网络流图,就是要求:在流量为2的状态下,1到n的最小费用。

3.那么怎么转化为最小费用最大流呢?设一个超级源点和一个超级汇点。且超级源点到1的容量为2,费用为0, n到超级汇点的容量为2,费用为0;且题目说明了必定有解,那么在这个条件下求超级源点到超级汇点的最小费用最大流,最大流就只能为2了。所以最小费用即为题目所求。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e3+; struct Edge
{
int to, next, cap, flow, cost;
}edge[<<];
int tot, head[MAXN];
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N; void init(int n)
{
N = n;
tot = ;
memset(head, -, sizeof(head));
} void add(int u, int v, int cap, int cost)
{
edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost;
edge[tot].flow = ; edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].cost = -cost;
edge[tot].flow = ; edge[tot].next = head[v]; head[v] = tot++;
} bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i<=N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
} dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost)
{
dis[v] = dis[u]+edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
} int minCostMaxFlow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min = edge[i].cap-edge[i].flow;
}
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost*Min;
}
flow += Min;
}
return flow;
} int main()
{
int n, m;
scanf("%d%d",&n,&m);
init(n+);
for(int i = ; i<=m; i++)
{
int u, v, c;
scanf("%d%d%d",&u,&v,&c);
add(u,v,,c); //双向图,容量为1,花费即为距离c
add(v,u,,c);
}
int start = , end = n+;
add(start, , , ); //超级源点到1的边,单向。容量为2, 花费为0
add(n, end, , ); //n到超级汇点的边,单向。容量为2, 花费为0
int ans;
minCostMaxFlow(start, end, ans);
printf("%d\n", ans);
return ;
}

POJ2135 Farm Tour —— 最小费用最大流的更多相关文章

  1. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  2. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

  3. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

  4. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

  5. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

  6. [poj] 1235 Farm Tour || 最小费用最大流

    原题 费用流板子题. 费用流与最大流的区别就是把bfs改为spfa,dfs时把按deep搜索改成按最短路搜索即可 #include<cstdio> #include<queue> ...

  7. POJ-2135 Farm Tour---最小费用最大流模板题(构图)

    题目链接: https://vjudge.net/problem/POJ-2135 题目大意: 主人公要从1号走到第N号点,再重N号点走回1号点,同时每条路只能走一次. 这是一个无向图.输入数据第一行 ...

  8. poj2135 Farm Tour(费用流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  9. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

随机推荐

  1. POJ2560 Freckles

    Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Description In an epis ...

  2. Linux性能分析Top

    前言 在实际开发中,有时候会收到一些服务的监控报警,比如CPU飙高,内存飙高等,这个时候,我们会登录到服务器上进行排查.本篇博客将涵盖这方面的知识:Linux性能工具. 一次线上问题排查模拟 背景:服 ...

  3. Objective-C NSString的常用用法

    //1.创建常量字符串. NSString *astring = @"This is a String!";   //2.创建空字符串,给予赋值. NSString *astrin ...

  4. Day 9 Linux samba & ngnix

    (摘) Samba服务 一.Samba简介  Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服 ...

  5. C# 用this修饰符为原始类型扩展方法

    特点:1.静态类 2.静态方法 3.第一个参数前加this 例如:public static List<T> ToList<T>(this string Json),就是为th ...

  6. java使用jxl,自动导出数据excle,quartz自动发送邮件

    =============JAVA后台代码===================== package com.qgc.service.autoSendMsg.AutoSendMsg import ja ...

  7. ROS节点分布式运行方法

    一. 主机Master设置 1.安装ssh客服端和服务器(ubuntu已默认安装了) 2.机器名与ip绑定 由于/etc/hosts中需要将计算机名和IP绑定,所有最好设置IP地址为静态地址 sudo ...

  8. 51 NOD 1383 整数分解为2的幂

    设f[i]为i这个数的划分方案,则: 1.i是奇数的时候,最前面只能放1,所以f[i] = f[i-1] 2.i是偶数的时候,最前面可以放1也可以不放1,而不放1的时候数列都是偶数所以 f[i] = ...

  9. 51 NOD 1325 两棵树的问题

    Discription 对于 100% 的数据, N<=50. solution: 发现N比较小,所以我们可以花O(N^2)的代价枚举两颗树的联通块的LCA分别是哪个点,然后现在问题就变成了:选 ...

  10. pnputil

    http://mb.yidianzixun.com/article/0FYSZgnB?s=mb&appid=mibrowser C:\Users\Administrator>pnputi ...