点分治,设当前处理的块的重心为rt,预处理出每个子树中f[v][0/1]表示组合出、没组合出一对值v的链数(从当前儿子出发的链),能组合出一对v值就是可以有一个休息点

然后对于rt,经过rt且合法的路径是两边拼起来至少有一个休息点的路径,每次假如新儿子都和之前的儿子组合一遍即可,注意f[0][0]实际上也是有休息点的,因为组合出0就是休息点,另外加一下

#include<iostream>
#include<cstdio>
using namespace std;
const int N=200005;
int n,h[N],cnt,rt,mxde,sm,t[N],mx[N],si[N],de[N],dis[N];
long long f[N][2],g[N][2],ans;
bool v[N];
struct qwe
{
int ne,to,va;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void gtrt(int u,int fa)
{
si[u]=1;
mx[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa&&!v[e[i].to])
{
gtrt(e[i].to,u);
si[u]+=si[e[i].to];
mx[u]=max(mx[u],si[e[i].to]);
}
mx[u]=max(mx[u],sm-si[u]);
if(mx[u]<mx[rt])
rt=u;
}
void dfs(int u,int fa)
{
de[u]=de[fa]+1;
mxde=max(mxde,de[u]);
if(t[dis[u]])
f[dis[u]][1]++;
else
f[dis[u]][0]++;
t[dis[u]]++;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa&&!v[e[i].to])
{
dis[e[i].to]=dis[u]+e[i].va;
dfs(e[i].to,u);
}
t[dis[u]]--;
}
void wk(int u)
{
int mx=0;
v[u]=1,g[n][0]=1;
for(int i=h[u];i;i=e[i].ne)
if(!v[e[i].to])
{
dis[e[i].to]=n+e[i].va;
de[e[i].to]=1;
mxde=1;
dfs(e[i].to,0);
mx=max(mx,mxde);
ans+=(g[n][0]-1)*f[n][0];
for(int j=-mxde;j<=mxde;j++)
ans+=g[n-j][1]*f[n+j][1]+g[n-j][0]*f[n+j][1]+g[n-j][1]*f[n+j][0];
for(int j=n-mxde;j<=n+mxde;j++)
g[j][0]+=f[j][0],g[j][1]+=f[j][1],f[j][0]=f[j][1]=0;
}
for(int i=n-mx;i<=n+mx;i++)
g[i][0]=g[i][1]=0;
for(int i=h[u];i;i=e[i].ne)
if(!v[e[i].to])
{
sm=si[e[i].to];
rt=0;
gtrt(e[i].to,0);
wk(rt);
}
}
int main()
{
n=read();
for(int i=1;i<n;i++)
{
int x=read(),y=read(),z=((read()==1)?1:-1);
add(x,y,z),add(y,x,z);
}
sm=mx[0]=n;
gtrt(1,0);
wk(rt);
printf("%lld\n",ans);
return 0;
}

bzoj 3697: 采药人的路径【点分治】的更多相关文章

  1. BZOJ 3697: 采药人的路径 [点分治] [我想上化学课]

    传送门 题意: 路径有$-1,1$两种权值,求有多少路径满足权值和为$0$且有一个点将路径分成权值和为$0$的两段 第四节课本来想去上化学,然后快上课了这道题还没调出来.....可恶我想上化学 昨天两 ...

  2. BZOJ 3697: 采药人的路径 点分治

    好久不做点分治的题了,正好在联赛之前抓紧复习一下. 先把边权为 $0$ 的置为 $-1$.定义几个状态:$f[dis][0/1],g[dis][0/1]$ 其中 $f$ 代表在当前遍历的子树内的答案. ...

  3. [BZOJ 3697] 采药人的路径

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3697 [算法] 首先 , 将黑色的边变成1 ,白色的边变成-1 那么 , 问题就转化 ...

  4. 【BZOJ】3697: 采药人的路径

    3697: 采药人的路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1718  Solved: 602[Submit][Status][Discu ...

  5. 【BZOJ3697】采药人的路径 点分治

    [BZOJ3697]采药人的路径 Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是 ...

  6. BZOJ 3697/3127 采药人的路径 (点分治)

    题目大意: 从前有一棵无向树,树上边权均为$0$或$1$,有一个采药人,他认为如果一条路径上边权为$0$和$1$的边数量相等,那么这条路径阴阳平衡.他想寻找一条合法的采药路径,保证阴阳平衡.然后他发现 ...

  7. BZOJ.3784.树上的路径(点分治 贪心 堆)

    BZOJ \(Description\) 给定一棵\(n\)个点的带权树,求树上\(\frac{n\times(n-1)}{2}\)条路径中,长度最大的\(m\)条路径的长度. \(n\leq5000 ...

  8. BZOJ3697采药人的路径——点分治

    题目描述 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的.采药人每天都要进行采药活动.他选择的路径 ...

  9. BZOJ3697:采药人的路径(点分治)

    Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天都要进行采药 ...

随机推荐

  1. linux nc,nmap,telnet ,natstat命令

    说明 在服务器运维中 通常需要知道 机器端口状态 是否开启 是否被防火墙拦截等.今天我们介绍这三个命令 用来检测端口. nc 命令 / TCP # 安装 yum install -y nc nc 命令 ...

  2. C#语言 ArrayList集合

  3. JS 计算2个日期相差的天数

    <span style="font-size:18px;">function getDays(strDateStart,strDateEnd){ var strSepa ...

  4. Mysql 数据库中间件

    读写分离:简单的说是把对数据库读和写的操作分开对应不同的数据库服务器,这样能有效地减轻数据库压力,也能减轻io压力.主数据库提供写操作,从数据库提供读操作,其实在很多系统中,主要是读的操作.当主数据库 ...

  5. mysql limit分页优化方法分享

    同样是取10条数据  select * from yanxue8_visit limit 10000,10 和  select * from yanxue8_visit limit 0,10  就不是 ...

  6. 【Web前端】清除浮动&amp;css中文字体

    清理浮动有非常多种方式,像使用 br 标签自带的 clear 属,使用元素的 overflow.使用空标签来设置 clear:both 等等.但考虑到兼容问题和语义化的问题,一般我们都会使用例如以下代 ...

  7. JAVA学习之 Model2中的Servlet与.NET一般处理程序傻傻分不清楚

    时隔多日,多日合适吗,应该是时隔多月.我又想起了一般处理程序.这都是由于近期在实现的DRP系统中经经常使用到jsp+servlet达到界面与逻辑的分离.servlet负责处理从jsp传回的信息:每当这 ...

  8. string和int互相转化

    1 如何将字串 String 转换成整数 int? A. 有两个方法: 1). int i = Integer.parseInt([String]); 或 i = Integer.parseInt([ ...

  9. NEU 1683: H-Index

    题目描述 Given an array of citations (each citation is a non-negative integer) of a researcher, write a ...

  10. SCX-4521F一体机MAC驱动

    如果您想下载SCX-4521F一体机MAC驱动,请从下面的链接中下载相应驱动:MAC打印驱动:http://org.downloadcenter.samsung.com/downloadfile/Co ...