题意:

给定一系列按x坐标升序排列的点,一个人从左向右走到终点再从终点走回起点,要求每个点恰好经过一次,问所走过的最短路径长度。

分析:

可以看成是两个人同时从起点向终点走,且除起点终点外每个点恰有一个人经过。

John uses the following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost point, and then he goes strictly right back to the starting point.

用d[i][j]表示一个人走到第i个位置,另一个人走到第j个位置时,已经共走了多少距离,规定其中i>j,且1~i全部走过。

题目要求严格按照从左到右和从右到左的顺序,所以不管哪个人下一步只能走i+1,i+2….如果一个人跳过i+1直接走到了i+2,则i+1必将由另一个人走,不妨让走i+1的人先走,这样便保证每次都先走到i+1,得到状态转移方程:(dist数组保存两点之间距离)

dp[i+1][j]=min(dp[i+1][j],dp[i][j]+dist[i+1][i]);
dp[i+1][i]=min(dp[i+1][i],dp[i][j]+dist[i+1][j]);

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=55, INF = 0x3fffffff; //为什么是55?
double x[maxn],y[maxn],dist[maxn][maxn],dp[maxn][maxn];
int main(void)
{
int n;
while(scanf("%d",&n) == 1){
for(int i =0; i < n ; i++)
scanf("%lf%lf",&x[i], &y[i]);
for(int i = 0;i < n; i++)
for(int j = 0 ; j < n ; j++)
dist[i][j] = sqrt((x[i] - x[j]) * (x[i]-x[j]) + (y[i] - y[j]) * (y[i] - y[j])); for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++)
dp[i][j] = INF;
}
dp[1][0]=dist[1][0]; for(int i = 1; i < n - 1; i++) {
for(int j = 0; j < i; j++){
dp[i + 1][j] = min(dp[i + 1][j], dp[i][j] + dist[i + 1][i]);
dp[i + 1][i] = min(dp[i + 1][i], dp[i][j] + dist[i + 1][j]);
}
} double ans = INF;
for(int i = 0; i < n - 1; i++){
ans = min(ans, dp[n-1][i] + dist[n - 1][i]); }
printf("%.2lf\n", ans);
}
return 0;
}

还可以用d[i][j]表示一个人走到第i个位置,另一个人走到第j个位置时,还剩多少距离,则状态转移方程

dp[i][j]=min(dist[i][i+1]+dp[i+1][j],dist[j][i+1]+dp[i+1][i]);  

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=55, INF = 0x3fffffff; //为什么是55?
double x[maxn],y[maxn],dist[maxn][maxn],dp[maxn][maxn];
int main(void)
{
int n;
while(scanf("%d",&n) == 1){
for(int i =0; i < n ; i++)
scanf("%lf%lf",&x[i],&y[i]);
for(int i = 0;i < n; i++)
for(int j = 0 ; j < n ; j++)
dist[i][j] = sqrt((x[i] - x[j]) * (x[i]-x[j]) + (y[i] - y[j]) * (y[i] - y[j])); for(int i = n - 2; i >=1; i--) {
for(int j = i - 1; j >= 0; j--){
if(i == n - 2) dp[i][j] = dist[i][n - 1] + dist[j][n - 1];
else
dp[i][j] = min(dist[i][i + 1]+dp[i + 1][j], dist[j][i + 1] + dp[i + 1][i]);
}
}
printf("%.2lf\n", dist[0][1] + dp[1][0]);
}
return 0;
}

貌似叫双调旅行商问题?

UVA 1347_Tour的更多相关文章

  1. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  2. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  3. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  4. UVA&&POJ离散概率与数学期望入门练习[4]

    POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...

  5. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...

  6. UVA数学入门训练Round1[6]

    UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...

  7. UVA - 1625 Color Length[序列DP 代价计算技巧]

    UVA - 1625 Color Length   白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束   和模拟赛那道环形DP很想,计算这 ...

  8. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  9. UVA - 11584 Partitioning by Palindromes[序列DP]

    UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...

随机推荐

  1. 使用Dotfuscator保护.NET DLL加密DLL,防止DLL反编译

    1.下载地址 https://pan.baidu.com/s/1ztWlBxw1Qf462AE7hQJQRg 2.操作步骤 2.1安装后打开DotfuscatorPro软件,如下图所示: 2.2 选择 ...

  2. leetcode764 Largest Plus Sign

    思路: 首先使用dp计算出在每个位置(i, j)上下左右最多有多少个连续的1,得到up[i][j], down[i][j], left[i][j], right[i][j].然后计算这四个值中的最小值 ...

  3. JSP(Java Servlet Page)

    一.简介 HTML HTML擅长显示一个静态的网页,但是不能调用Java程序. Servlet Servlet擅长调用Java程序和后台进行交互,但是它不擅长显示一个完整的HTML页面. 我们希望创建 ...

  4. HTML中的那些bug

    1.语法检测时提示有多余的结束标签 <!doctype html> <html> <head> <meta charset="utf-8" ...

  5. iOS Programming Dynamic Type 2

    iOS Programming Dynamic Type  2       You will need to update two parts of this view controller for ...

  6. java web 学习笔记 - 表达式语言

    1.表达式语言简介 主要为了简化mvc中 jsp的代码量,方便进行属性的输出.还可以避免进行属性为空等的判断,表达式默认将null设置为"". 表达式语言的一个最大的好处就是,只需 ...

  7. AIX 10G HA RAC卸载

    删除 1:crs_stat –t资源都停掉 2:停ha 3: 删除oracle 4:删除crs 5: 删除ha smit hacmp 6: 删除vg exportvg 7;卸载hacmp smitty

  8. vue项目打包步骤及运行打包项目

    (1)项目打包 终端运行命令 npm run build 打包成功的标志与项目的改变,如下图: 点击index.html,通过浏览器运行,出现以下报错,如图: 那么应该如何修改呢?    具体步骤如下 ...

  9. springboot实现web应用过程中的摸爬打滚(持续更新ing)

    最近在做公司的网站项目,后端用到springboot.怎么说呢,记录总结一下自己开发过程中遇到的坑和一些心得体会,以及一些技巧.方便以后回顾复习,也供同行们参考. 开发环境:eclipse2018-1 ...

  10. iis如何在dos中注册

    iis如何在dos中注册   2009-09-23 08:13 提问者采纳   cd \cd c:\windows\microsoft.net\framework\v2.0.50727aspnet_r ...