题目链接

  设c[i]是战斗力前缀和,f[i]是考虑前i个,且最后一组分到第i个士兵为止的战斗力之和

  则有朴素状态转移方程

for(int i=;i<=n;++i)
for(int j=;j<i;++j){
int x=c[i]-c[j];
f[i]=min(f[i],a*x*x+b*x+c);
}

  然后考虑优化。

  假设f[i]最优结果是从f[j]转移过来,同时有一个不那么优的转移f[k]

  则有$f[j]+a*squa(c[i]-c[j])+b*(c[i]-c[j])+c>f[k]+a*squa(c[i]-c[k])+b*(c[i]-c[k])+c$

  展开得到$f[j]+a*squa(c[i])+a*squa(c[j])-2*a*c[i]*c[j]+b*c[i]-b*c[j]>f[k]+a*squa(c[i])+a*squa(c[k])-2*a*c[i]*c[k]+b*c[i]-b*c[k]$

  整理有$f[j]+a*squa(c[j])-2*a*c[i]*c[j]-b*c[j]>f[k]+a*squa(c[k])-2*a*c[i]*c[k]-b*c[k]$

  于是有$\frac{(f[j]+a*c[j]^{2}-b*c[j])-(f[k]+a*c[k]^{2}-b*c[k])}{2*a*(c[j]-c[k])}>c[i]$

  于是可以单调队列优化DP

  

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long sum[];
long long f[];
long long d[];
long long a,b,c;
inline long long squa(long long x){ return x*x; }
inline double count(int x,int y){ return ( (f[x]+a*d[x]-b*sum[x])-(f[y]+a*d[y]-b*sum[y]) )/(2.0*a*(sum[x]-sum[y])); } int s[];
int h,t; int main(){
int n=read();
a=read();b=read();c=read();
for(int i=;i<=n;++i){
sum[i]=read()+sum[i-];
d[i]=squa(sum[i]);
f[i]=-1e18;
}
for(int i=;i<=n;++i){
while(h<t&&count(s[h],s[h+])<=sum[i]*1.0) h++;
int x=s[h];
f[i]=f[x]+a*squa(sum[i]-sum[x])+b*(sum[i]-sum[x])+c;
while(h<t&&count(s[t-],s[t])>=count(s[t],i)) t--;
s[++t]=i;
}
printf("%lld",f[n]);
return ;
}

【Luogu】P3628特别行动队(斜率优化DP)的更多相关文章

  1. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  2. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  3. APIO 2010 特别行动队 斜率优化DP

    Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i ...

  4. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  5. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  6. BZOJ 1911 特别行动队(斜率优化DP)

    应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...

  7. luogu3628 特别行动队 (斜率优化dp)

    推出来式子以后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...

  8. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  9. 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP

    想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...

  10. bzoj 1911: [Apio2010]特别行动队 -- 斜率优化

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Description Input Output Sample Input 4 ...

随机推荐

  1. liunx下忘记root密码的解决方法

    1.在Liunx 刚开始重启时.我们这里按“e”键进入系统启动前的Grub配置.(注:一般要安两次e键)(如果你的系统引导程序是LILO,和Grub大体类似,请自行参照LILO给出的提示操作) 如图: ...

  2. lua_to_luac

    #!/bin/sh `rm -rf allLua.zip` `mkdir ./tempScripts` `mkdir ./tempScripts/scripts` `cp -a ./scripts/ ...

  3. Could not load OpenSSL解决

    问题 Could not load OpenSSL. You must recompile Ruby with OpenSSL support or change the sources in you ...

  4. java多线程---ReentrantLock源码分析

    ReentrantLock源码分析 基础知识复习 synchronized和lock的区别 synchronized是非公平锁,无法保证线程按照申请锁的顺序获得锁,而Lock锁提供了可选参数,可以配置 ...

  5. Jarvis OJ-level3

    使用ret2libc攻击方法绕过数据执行保护 from pwn import* conn = remote("pwn2.jarvisoj.com",9879) elf = ELF( ...

  6. 【整理】C#文件操作大全

    文件与文件夹操作主要用到以下几个类: 1.File类: 提供用于创建.复制.删除.移动和打开文件的静态方法,并协助创建 FileStream 对象. msdn:http://msdn.microsof ...

  7. java在线聊天项目0.6版 解决客户端关闭后异常问题 dis.readUTF()循环读取已关闭的socket

    服务端对try catch finally重新进行了定义,当发生异常,主动提示,或关闭出现异常的socket 服务器端代码修改如下: package com.swift; import java.io ...

  8. ios 自定义RadioButton

    1 前言 众所周知在IOS中没有单选按钮这一控件,今天我们来学习一下简单的单选控件.类似与Web中的radio表单元素. 2 详述 本控件单纯的利用按钮控件和NSObject的respondsToSe ...

  9. Shell脚本的条件测试与比较

    Shell脚本的条件测试与比较 一.shell脚本的条件测试 通常,在bash的各种条件结构和流程控制结构中都要进行各种测试,然后根据测试结构执行不同的操作,有时也会与if等条件语句相结合,来完成测试 ...

  10. 看外设(uart/spis/i2c/i2s)模块设计

    1.先看外设接口协议. 2.看具体设计文档. 3.仿真case.