传送门

不会莫比乌斯反演,不会递推。

但是我会看题解。

先将区间[L,H]变成(L-1,H],这样方便处理

然后求这个区间内gcd为k的方案数

就是求区间((L-1)/k,H/k]中gcd为1的方案数

有个重要的性质:如果有一些不相同的数,最大的为a,最小的为b,任意选取其中的一些数,则他们的gcd<=a-b

设f[i]表示gcd为i且所选的数不相同的方案数,但是不好求,只容易求出gcd为i的倍数g[i]的方案数

考虑容斥原理,f[i] = g[i] - f[2i] - f[3i] - ……

计算g[i]的时候要把相同的数的方案数减去,因为我们有个前提,只有数都不相同时gcd的大小才能保证

倒着递推便可以省略g数组

#include <cstdio>
#define N 100001
#define p 1000000007
#define LL long long using namespace std; LL f[N];
int n, k, l, r, flag, len; inline LL ksm(LL x, int y)
{
LL ret = 1;
for(; y; y >>= 1)
{
if(y & 1) ret = ret * x % p;
x = x * x % p;
}
return ret;
} int main()
{
int i, j, x, y;
scanf("%d %d %d %d", &n, &k, &l, &r);
if(l <= k && k <= r) flag = 1;
l--, l /= k, r /= k, len = r - l;
//转变成求区间(l, r]中gcd为1的方案数
for(i = len; i >= 1; i--)
{
x = l / i, y = r / i;
f[i] = (LL)(ksm(y - x, n) - (y - x)) % p;
for(j = i + i; j <= len; j += i) f[i] = (f[i] - f[j]) % p;
}
printf("%lld\n", (f[1] + flag + p) % p);
return 0;
}

  

[luoguP3172] [CQOI2015]选数(递推+容斥原理)的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 3930: [CQOI2015]选数|递推|数论

    题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...

  3. luoguP3172 [CQOI2015]选数

    题意 所求即为: \(\sum\limits_{i_1=L}^{R}\sum\limits_{i_2=L}^{R}...\sum\limits_{i_k=L}^{R}[\gcd(i_1,i_2,... ...

  4. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  5. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  6. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  7. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  8. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

随机推荐

  1. Fragment(一)--Fragment用法常见问题

    fragment notes fragment相关内容包括 基本定义与使用 回退栈内部实现 fragment通信(与activity 与fragment) DialogFragment VP + Fr ...

  2. CPU性能的评价

    人们通常用benchmark 来衡量CPU的性能,常见的benchmark有dhrystone和coremark. 由于dhrystone 受编译器影响比较大,所以,结果不是很准确,现在大多采用cor ...

  3. 华硕笔记本刷BIOS

    笔记本硬件升级后想使用微软的Windows xp mode,之后发现笔记本BIOS中没有虚拟化选项,想通过升级BIOS的方法来解决,结果失败. 升级后出现关机后无法关闭电源指示灯以及风扇的问题,之后只 ...

  4. HDU 4276 The Ghost Blows Light (树形DP,变形)

    题意:给定一棵n个节点的树,起点是1,终点是n,每经过一条边需要消耗Ti天,每个点上有一定量的珠宝,要求必须在t天内到达终点才可以将珠宝带出去,问至多能带多少珠宝? 思路: 注意Ti可以为0,而且有可 ...

  5. (六)maven之本地仓库

     本地仓库 ①    运行机制: 当用户在pom.xml文件中添加依赖jar包时,maven会先从本地仓库查找,如果这个jar包在本地仓库中找不到,就从中央仓库下载到本地仓库,中央仓库是maven默认 ...

  6. 3d点云

    rgb-d:rgb加depth组成4channel的 3d点云

  7. 第五次作业:Excel制作英文课程表

    要求: 一.内外变宽线条与颜色图同,表格有底纹色彩 二.横向打印,上下左右居中,表格标题居中,表头斜线,斜线两边加文字 三.设置打开密码

  8. c++:printf和cout那个更好更快些

    现在群里在讨论cout和printf那个快的问题,但我个人觉得printf好: 因为:printf对于一些数据大,以及保留小数位,字符……可以显示出明显的优势如“%s %d %c…………” 虽然pri ...

  9. MySQL开启日志跟踪

    在开发过程中有时候会遇到sql相关的问题,但是有时候代码中不会直接看到真实的sql,想要看到mysql中实际执行的是什么sql,可以通过开启日志跟踪方式查看. 1 开启日志跟踪 SET GLOBAL ...

  10. (48)zabbix报警媒介:自定义脚本Custom alertscripts

    自定义脚本媒介.zabbix会将信息传递给脚本,接下来你在脚本里面随意处理,一共会传递三个参数,按顺序接受也就是$1,$2,$3了,为了方便记忆,一般分别给他们赋值到To\Subject\body 配 ...