BZOJ 3343: 教主的魔法(分块+二分查找)

3343: 教主的魔法

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1172  Solved: 526
[Submit][Status][Discuss]

这个题目为什么不能用线段树做事因为C的值不固定,如果用线段树来做,那么每一个C值要从新建一遍线段树,时间会爆炸的

add操作:
1.同一块暴力修改,然后重构
2.两端不完整的暴力修改重构,中间完整的块加标记
查询操作:
1.同一块暴力
2.两端暴力,中间在b中二分查找

Description

教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[LR](1≤LRN)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第LR)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [LR] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。
 

Input

       第1行为两个整数NQQ为问题数与教主的施法数总和。
       第2行有N个正整数,第i个数代表第i个英雄的身高。
       第3到第Q+2行每行有一个操作:
(1)       若第一个字母为“M”,则紧接着有三个数字LRW。表示对闭区间 [LR] 内所有英雄的身高加上W
(2)       若第一个字母为“A”,则紧接着有三个数字LRC。询问闭区间 [LR] 内有多少英雄的身高大于等于C
 

Output

       对每个“A”询问输出一行,仅含一个整数,表示闭区间 [LR] 内身高大于等于C的英雄数。
 

Sample Input

5 3
1 2 3 4 5
A 1 5 4
M 3 5 1
A 1 5 4

Sample Output

2
3

HINT

【输入输出样例说明】
原先5个英雄身高为1、2、3、4、5,此时[1, 5]间有2个英雄的身高大于等于4。教主施法后变为1、2、4、5、6,此时[1, 5]间有3个英雄的身高大于等于4。
 
【数据范围】
对30%的数据,N≤1000,Q≤1000。
对100%的数据,N≤1000000,Q≤3000,1≤W≤1000,1≤C≤1,000,000,000。

简单想了一下,主席树不好做,莫队也不好做(询问之间不好转移)
那就暴力分块了
 
bl是块的大小,m是块的个数,pos[i]为i所在块的编号
b数组维护每个块排好序的
add操作:
1.同一块暴力修改,然后重构
2.两端不完整的暴力修改重构,中间完整的块加标记
查询操作:
1.同一块暴力
2.两端暴力,中间在b中二分查找
 
问题:
1.注意二分查找写法,找大于等于
2.l=(x-1)*bl+1,r=min(x*bl,n)
3.不要漏加/多加pos
 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e6+5,M=1e3+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n,Q,bl,m,a[N],pos[N],b[N],add[M],x,y,z;
char s[10];
void reset(int x){
int l=(x-1)*bl+1,r=min(x*bl,n);
for(int i=l;i<=r;i++) b[i]=a[i];
sort(b+l,b+r+1);
}
void change(int l,int r,int v){
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++) a[i]+=v;
reset(pos[l]);
}else{
int t=pos[l]*bl;
for(int i=l;i<=t;i++) a[i]+=v;
for(int i=(pos[r]-1)*bl+1;i<=r;i++) a[i]+=v;
reset(pos[l]);reset(pos[r]);
for(int i=pos[l]+1;i<pos[r];i++) add[i]+=v;
}
}
inline int find(int x,int v){
int l=(x-1)*bl+1,r=min(x*bl,n),t=r;
while(l<=r){
int mid=(l+r)>>1;
if(b[mid]<v) l=mid+1;
else r=mid-1;
}
return t-l+1;
}
int query(int l,int r,int v){
int ans=0;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++) if(a[i]+add[pos[i]]>=v) ans++;
return ans;
}else{
int t=pos[l]*bl;
for(int i=l;i<=t;i++) if(a[i]+add[pos[i]]>=v) ans++;
for(int i=(pos[r]-1)*bl+1;i<=r;i++) if(a[i]+add[pos[i]]>=v) ans++;
for(int i=pos[l]+1;i<pos[r];i++) ans+=find(i,v-add[i]);
return ans;
}
}
int main(){
n=read();Q=read();
bl=sqrt(n);
m=n/bl;if(n%bl) m++;
for(int i=1;i<=n;i++) a[i]=read(),pos[i]=(i-1)/bl+1;
for(int i=1;i<=m;i++) reset(i);
while(Q--){
scanf("%s",s);x=read();y=read();z=read();
if(s[0]=='M') change(x,y,z);
else printf("%d\n",query(x,y,z));
}
}
 

BZOJ 3343: 教主的魔法(分块+二分查找)的更多相关文章

  1. Bzoj 3343: 教主的魔法(分块+二分答案)

    3343: 教主的魔法 Time Limit: 10 Sec Memory Limit: 256 MB Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息 ...

  2. Bzoj 3343: 教主的魔法 分块,二分

    3343: 教主的魔法 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 821  Solved: 364[Submit][Status][Discuss ...

  3. BZOJ 3343: 教主的魔法 [分块]【学习笔记】

    3343: 教主的魔法 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1172  Solved: 526[Submit][Status][Discus ...

  4. 「BZOJ3343」教主的魔法(分块+二分查找)

    题意: 给定一个数列,您需要支持以下两种操作:给[l,r]同加一个数询问[l,r]中有多少数字大于或等于v (n<=1000000,m<=3000) 题解 块内排序二分查询修改就用个数组存 ...

  5. bzoj 3343 教主的魔法 分块

    修改直接对整块打标记,两边暴力. 查询需要保证每个整块有序,所以在修改时排序就好啦 #include<cstdio> #include<cstring> #include< ...

  6. 【BZOJ3343】教主的魔法 分块+二分

    Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的 ...

  7. bzoj 3343: 教主的魔法

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 924  Solved: 402[Submit][Status][Discuss] Descriptio ...

  8. BZOJ——3343: 教主的魔法 || 洛谷—— P2801 教主的魔法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3343  ||  https://www.luogu.org/problem/show?pid=280 ...

  9. BZOJ 3343教主的魔法

    Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的 ...

随机推荐

  1. 梦想CAD控件关于曲线问题

    IMxDrawCurve 接口 控件中的曲线接口,实现了曲线的相关操作,如求曲线的长度,最近点,面积,曲线上任一点在曲线上的长度 切向方向,曲线交点,坐标变换,打断,偏移,离散等功能. 一.返回曲线组 ...

  2. php中 如何找到session 的保存位置

    [前言] 刚刚想测试FQ操作,需要删除session,这里记录分享下 [主体] (1)想要查看session保存的目录,需要先找到 php.ini配置文件 (2)在php.ini文件中查找 sessi ...

  3. JAVA基础——异常--解析

      简介 异常处理是java语言的重要特性之一,<Three Rules for effective Exception Handling>一文中是这么解释的:它主要帮助我们在debug的 ...

  4. Python学习-字符串函数操作2

    字符串函数操作 find( sub, start=None, end=None):从左到右开始查找目标子序列,找到了结束查找返回下标值,没找到返回 -1 sub:需要查找的字符串 start=None ...

  5. java环境初级部署及项目搭建

    一.网页地址 Java各版本下载地址: http://www.oracle.com/technetwork/cn/java/archive-139210-zhs.html Eclipse官方下载地址: ...

  6. buf.readUInt8()

    buf.readUInt8(offset[, noAssert]) offset {Number} 0 <= offset <= buf.length - 1 noAssert {Bool ...

  7. C#创建excel并释放资源

    using System; using Microsoft.Office.Interop.Excel; using Excel = Microsoft.Office.Interop.Excel; us ...

  8. 在线安全清空慢查询日志slowlog

      mysql> show variables like '%slow_query%';+------------------------------------+--------------- ...

  9. 洛谷 4172 [WC2006]水管局长

    [题解] 我们把操作倒过来做,就变成了加边而不是删边.于是用LCT维护动态加边的最小生成树就好了.同样要注意把边权变为点权. #include<cstdio> #include<al ...

  10. vs2017 添加引用时 未能完成操作。不支持此接口

    打开vs2017开发者命令提示符 切换至安装下的指定目录 执行下面的命令就可以了    需要注意的是一定要用vs2017的开发人员命令提示符  别用cmd gacutil -i Microsoft.V ...