【线性代数】2-6:三角矩阵( $A=LU$ and $A=LDU$ )
title: 【线性代数】2-6:三角矩阵( A=LUA=LUA=LU and A=LDUA=LDUA=LDU )
toc: true
categories:
- Mathematic
- Linear Algebra
date: 2017-09-12 15:41:12
keywords: - A=LU
- A=LDU
- Factorization
Abstract: 如何将矩阵分解成三角矩阵
Keywords: A=LU,A=LDU,Factorization
开篇废话
今晚苹果要新版本iPhone了,不知不觉iPhone已经十年了,然而我只用过iPhone4和6,技术的不断创新,给人们带来了方便,也改变了产业结构和生活方式,这应该与自然的变迁类似,无法阻挡的历史潮流,人类一切的进步都源自于对未知事物的探索,希望各位继续努力,为人类的进步,为人类与自然的和谐相处努力。
Factorization
因式分解,开始学的时候肯定是分解多项式,将一串长的式子分解成几个因式相乘的形式,矩阵也可以,把一个矩阵分解成几个矩阵相乘的形式,但是问题来了,从表述上看,多项式分解的结果是整体变得简单了,但是矩阵分解好像越分越多啊,是多了,但是多出来这些矩阵都很有特点,他们的形状固定,大部分元素是0.
回想一下消元的过程
A to U
E21A=[10−31][2168]=[2105]=U
E_{21}A=
\begin{bmatrix}1&0\newline -3&1\end{bmatrix}
\begin{bmatrix}2&1\newline 6&8\end{bmatrix}=
\begin{bmatrix}2&1\newline 0&5\end{bmatrix}=U
E21A=[10−31][2168]=[2105]=U
U to A
E21−1U=[1031]=[2105]=[2168]=AU
E_{21}^{-1}U=
\begin{bmatrix}1&0\newline 3&1\end{bmatrix}=
\begin{bmatrix}2&1\newline 0&5\end{bmatrix}=
\begin{bmatrix}2&1\newline 6&8\end{bmatrix}=A
U
E21−1U=[1031]=[2105]=[2168]=AU
从U到A的过程就是我们今天的男一号,A=LUA=LUA=LU
消元的解释说明
1:E−1E^{-1}E−1 都是lower triangular 下三角矩阵,对角线元素全部为1
2:E−1E^{-1}E−1 就是LLL,把U变回A的系数矩阵
3:每个消元系数lijl_{ij}lij 只会把对应的(i,j)位置的元素干掉,不会影响其他位置,尤其是已经完成消元的位置
A=LUA=LUA=LU
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-6转载请标明出处
【线性代数】2-6:三角矩阵( $A=LU$ and $A=LDU$ )的更多相关文章
- 牛客多校第八场 C CDMA 线性代数:沃尔什矩阵
题意: 构造出一个由1和-1组成的$2^k*2^k$的矩阵,使得矩阵任意两列内积为0 题解: 数学知识,沃尔什矩阵.沃尔什矩阵的特性被CDMA(码分多址)采用,使得编码成为无线信号的频段和振幅之外的第 ...
- Python的list用法笔记
今天做leetcode的str反转,学到了不少python的用法,这里做个笔记: str和list互相转换 str转list >>> a='apple' >>> l ...
- 图测试题部分总结.ing
一个无向连通图的生成树是含有该连通图的全部顶点的(极小连通子图) 在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是(D)A.G中有弧<Vi,Vj> B.G中有一条 ...
- python 矩阵分成上三角下三角和对角三个矩阵
diagonal Return specified diagonals. diagflat Create a 2-D array with the flattened input as a diago ...
- [转]numpy线性代数基础 - Python和MATLAB矩阵处理的不同
转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/de ...
- 斯坦福大学CS224d基础1:线性代数回顾
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...
- [Swust OJ 643]--行列式的计算(上三角行列式变换)
题目链接:http://acm.swust.edu.cn/problem/643/ Time limit(ms): 1000 Memory limit(kb): 65535 Description ...
- MIT线性代数课程 总结与理解-第一部分
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...
- 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估
进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...
随机推荐
- php分页思路
<?php class page{ public $nowPage=1; public $perPage=10; public $showPage=10; public $totalPage; ...
- 【数据结构】P1996 约瑟夫问题
[题目链接] https://www.luogu.org/problem/P1996 题目描述 n个人(n<=100)围成一圈,从第一个人开始报数,数到m的人出列,再由下一个人重新从1开始报数, ...
- 升级CentOS 7.4内核版本--升级到最新
在实验环境下,已安装了最新的CentOS 7.4操作系统,现在需要升级内核版本.实验环境 CentOS-7-x86_64-Minimal-1708.isoCentOS Linux release 7. ...
- 禅道工具的下载和使用(原地址:https://www.cnblogs.com/ydnice/p/5800256.html)
下载地址:http://sourceforge.net/projects/zentao/files/8.2/ZenTaoPMS.8.2.stable.exe/download 1.解压ZenTaoPM ...
- -bash: /usr/librxec/grepconf.sh:Nosuch file or directory
最近修改/etc/profile文件时,不小心在后面添加了source /etc/profile,导致使用xshell登录远程linux的时候出现下面的信息, 一直无法进入linux,将profile ...
- virtual和override
偶然间看到的题,借此记录. class Program { static void Main(string[] args) { D d = new D(); //第一个D是申明类,第二个D是实例类 A ...
- 一个jenkins的bug
部署在redhat上docker中的jenkins运行了很久了,最新发现一个站点不是最新的,于是去查看发现git仓库都连不上,我换成外网github的仓库就可以连非得是https吗???? 提示是域名 ...
- java Map 四种遍历方法
public static void main(String[] args) { Map<String, String> map = new HashMap<String, Stri ...
- ECMAScript中的原型继承
//ECMAScript中的原型继承//ECMAScript中的继承主要是依靠原型链实现的.(关于原型链的介绍,详见<高三>6.3.1章节 P162) //本文示例主要为了说明SubTyp ...
- vue报类似警告Computed property "isLoading" was assigned to but it has no setter
一.原因:一个计算属性,当计算传入的是一个函数,或者传入的是一个对象,而没有设置 setter,也就是 set 属性,当你尝试直接该改变这个这个计算属性的值,都会报这个警告,vuex还会出现通过com ...
