title: 【线性代数】2-6:三角矩阵( A=LUA=LUA=LU and A=LDUA=LDUA=LDU )

toc: true

categories:

  • Mathematic
  • Linear Algebra

    date: 2017-09-12 15:41:12

    keywords:
  • A=LU
  • A=LDU
  • Factorization

Abstract: 如何将矩阵分解成三角矩阵

Keywords: A=LU,A=LDU,Factorization

开篇废话

今晚苹果要新版本iPhone了,不知不觉iPhone已经十年了,然而我只用过iPhone4和6,技术的不断创新,给人们带来了方便,也改变了产业结构和生活方式,这应该与自然的变迁类似,无法阻挡的历史潮流,人类一切的进步都源自于对未知事物的探索,希望各位继续努力,为人类的进步,为人类与自然的和谐相处努力。

Factorization

因式分解,开始学的时候肯定是分解多项式,将一串长的式子分解成几个因式相乘的形式,矩阵也可以,把一个矩阵分解成几个矩阵相乘的形式,但是问题来了,从表述上看,多项式分解的结果是整体变得简单了,但是矩阵分解好像越分越多啊,是多了,但是多出来这些矩阵都很有特点,他们的形状固定,大部分元素是0.

回想一下消元的过程

A to U

E21A=[10−31][2168]=[2105]=U
E_{21}A=
\begin{bmatrix}1&0\newline -3&1\end{bmatrix}
\begin{bmatrix}2&1\newline 6&8\end{bmatrix}=
\begin{bmatrix}2&1\newline 0&5\end{bmatrix}=U
E21​A=[1​0−3​1​][2​16​8​]=[2​10​5​]=U

U to A

E21−1U=[1031]=[2105]=[2168]=AU
E_{21}^{-1}U=
\begin{bmatrix}1&0\newline 3&1\end{bmatrix}=
\begin{bmatrix}2&1\newline 0&5\end{bmatrix}=
\begin{bmatrix}2&1\newline 6&8\end{bmatrix}=A
U
E21−1​U=[1​03​1​]=[2​10​5​]=[2​16​8​]=AU

从U到A的过程就是我们今天的男一号,A=LUA=LUA=LU

消元的解释说明

1:E−1E^{-1}E−1 都是lower triangular 下三角矩阵,对角线元素全部为1

2:E−1E^{-1}E−1 就是LLL,把U变回A的系数矩阵

3:每个消元系数lijl_{ij}lij​ 只会把对应的(i,j)位置的元素干掉,不会影响其他位置,尤其是已经完成消元的位置

A=LUA=LUA=LU

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-6转载请标明出处

【线性代数】2-6:三角矩阵( $A=LU$ and $A=LDU$ )的更多相关文章

  1. 牛客多校第八场 C CDMA 线性代数:沃尔什矩阵

    题意: 构造出一个由1和-1组成的$2^k*2^k$的矩阵,使得矩阵任意两列内积为0 题解: 数学知识,沃尔什矩阵.沃尔什矩阵的特性被CDMA(码分多址)采用,使得编码成为无线信号的频段和振幅之外的第 ...

  2. Python的list用法笔记

    今天做leetcode的str反转,学到了不少python的用法,这里做个笔记: str和list互相转换 str转list >>> a='apple' >>> l ...

  3. 图测试题部分总结.ing

    一个无向连通图的生成树是含有该连通图的全部顶点的(极小连通子图) 在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是(D)A.G中有弧<Vi,Vj> B.G中有一条 ...

  4. python 矩阵分成上三角下三角和对角三个矩阵

    diagonal Return specified diagonals. diagflat Create a 2-D array with the flattened input as a diago ...

  5. [转]numpy线性代数基础 - Python和MATLAB矩阵处理的不同

    转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/de ...

  6. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  7. [Swust OJ 643]--行列式的计算(上三角行列式变换)

    题目链接:http://acm.swust.edu.cn/problem/643/ Time limit(ms): 1000 Memory limit(kb): 65535   Description ...

  8. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  9. 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估

    进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...

随机推荐

  1. kafka安装、相关命令以及PHP使用

    1.安装JAVA #下载安装包 https://www.oracle.com/technetwork/java/javase/downloads/index.html tar -xzvf jdk-8u ...

  2. python之并发编程(概念篇)

    一.进程 1.什么是进程 进程是正在进行的一个过程或者一个任务.而负责执行任务的则是cpu. 2.进程与程序的区别 程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程 ...

  3. re(模块正则表达式)

    re模块(正则) ​ 正则是用一些具有特殊含义的符号组合到一起(成为正则表达式)来描述字符或者字符串的方法,或者说正则就是用来描述一类事物的规则. import re #从字符串中全部查找内容,返回一 ...

  4. 网络编程[第三篇]基于tcp协议实现远程连接

    需要用到subprogress模块来远程控制cmd控制台程序来得到控制台的输出信息 一.服务端 —— 控制输出信息 import socket import subprocess #socket实例化 ...

  5. DDD 理解

    DDD提倡充血模型,业务放在类中,而不是服务中,刚开始是比较不清楚的.突然明白,以前开发桌面程序的时候,不就是这样处理了吗?业务分析和代码实现一一对应.因为桌面程序没有数据库,他就是纯粹的面向对象的实 ...

  6. 获取windows进程信息及CListCtrl控件(List Control)练习

    环境:VS2010/MFC/对话框 效果图: 目录: 1.  关于windows进程信息获取 2.  CListCtrl的使用 ------------------------------------ ...

  7. 销售订单(SO)-API-创建销售订单

    创建销售订单API主要注意几点: 初始化环境变量:fnd_global.apps_initialize(); mo_global.init('ONT'); mo_global.set_policy_c ...

  8. 根治android studio无法预览xml布局的问题

    xml报错“Failed to load AppCompat ActionBar with unknown error.” 修改build-gradle文件中的appcompat包导入的版本,直接用“ ...

  9. Dedecms限制栏目列表生成的最大页数

    首先,我们要登陆DEDECMS后台 >> 系统 >> 站点设置 的同条栏目上,添加一个新的变量,变量名称:cfg_listmaxpage,变量说明:栏目生成列表最大页数,变量值 ...

  10. Linux基础篇之FTP服务器搭建(二)

    上一篇文章说到了搭建FTP匿名用户的访问,接下来讲解一下本地用户的登录. 一.首先先建立一个用户,这里举例:xiaoming,并为其设置密码.  二.修改配置文件. 文件:ftpusers 文件:us ...