hdu 4998 Rotate 点的旋转 银牌题
Rotate
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1232 Accepted Submission(s): 545
Special Judge
Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi.
Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π).
Of course, you should be able to figure out what is A and P :).
For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p.
We promise that the sum of all p's is differed at least 0.1 from the nearest multiplier of 2π.
T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π.
Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5.
3
0 0 1
1 1 1
2 2 1
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <map>
#include <bitset>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <set> #define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define CT continue
#define SC scanf const double eps=1e-8;
const double pi=acos(-1);
int cas,n; struct Point{
double x,y,pi;
void read(){
SC("%lf%lf%lf",&x,&y,&pi);
}
}p[15]; int dcmp(double a)
{
if(fabs(a)<eps) return 0;
else return a>0?1:-1;
} double dot(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
} double Length(Point a)
{
return sqrt(a.x*a.x+a.y*a.y);
} Point operator*(double k,Point a)
{
return (Point){k*a.x,k*a.y,0};
} Point operator-(Point a,Point b)
{
return (Point){a.x-b.x,a.y-b.y,0};
} Point operator+(Point a,Point b)
{
return (Point){a.x+b.x,a.y+b.y,0};
} Point Rotate(Point a,double rad)
{
return (Point){a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad),0};
} Point Normal(Point a)
{
double L=Length(a);
return (Point){-a.y/L,a.x/L,0};
} void R(Point &s,Point &t,Point &nor,Point &mid)
{
s=p[0];
for(int i=1;i<=n;i++){
Point v=p[0]-p[i];
v=Rotate(v,p[i].pi);
p[0]=p[i]+v;
}
t=p[0];
nor=Normal(t-s),mid=(Point){(s.x+t.x)/2,(s.y+t.y)/2,0};
} double cross(Point a,Point b)
{
return a.x*b.y-b.x*a.y;
} Point Getlineintersection(Point p,Point v,Point q,Point w)
{
Point u=p-q;
double t=cross(w,u)/cross(v,w);
return p+t*v;
} int main()
{
SC("%d",&cas);
while(cas--)
{
SC("%d",&n);
for(int i=1;i<=n;i++) p[i].read();
Point s1,t1,s2,t2,nor1,nor2,mid1,mid2,o;
p[0]={12,9,0};
R(s1,t1,nor1,mid1);
p[0]={3,17,0};
R(s2,t2,nor2,mid2); o=Getlineintersection(mid1,nor1,mid2,nor2);
Point os=s1-o,ot=t1-o; double ang,ang1=atan2(os.y,os.x),ang2=atan2(ot.y,ot.x);
if(dcmp(ang1-ang2)>0) ang=ang1-ang2;
else ang=ang2-ang1; if(dcmp(cross(t1-s1,o-s1))>0){
if(dcmp(ang-pi)>0) ang=2*pi-ang;
}
else {
if(dcmp(pi-ang)>0) ang=2*pi-ang;
} if(dcmp(o.x)==0) o.x=0;
if(dcmp(o.y)==0) o.y=0;
printf("%.10f %.10f %.10f\n",o.x,o.y,ang);
}
return 0;
}
1.因为题目保证有解,所以在平面上任取两点,求出旋转后的弧度,那么最后选装的圆心必定在两条
从起点到终点的中垂线上
2.找到圆心后,再依据圆心在向量st的左侧还是右侧确定旋转的弧度是>pi还是小于pi。
3.最后因为double表示数据时,0可能是2*1e-30,按%.10f输出则是-0.00000000,所以需要
在最后判断一下。
hdu 4998 Rotate 点的旋转 银牌题的更多相关文章
- HDU 4998 Rotate (计算几何)
HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...
- HDU 4998 Rotate --几何
题意:给n个点(x,y,p),从1~n,一次每次所有点绕着第 i 个点(原来的)逆时针转pi个弧度,问最后所有点的位置相当于绕哪个点旋转多少弧度,求出那点X和弧度P 解法:直接模拟旋转,每次计算新的坐 ...
- HDU 4998 Rotate
题意: n次旋转 每次平面绕ai点旋转pi弧度 问 最后状态相当于初始状态绕A点旋转P弧度 A和P是多少 思路: 如果初始X点的最后状态为X'点 则圆心一定在X和X'连线的垂直平分线上 那 ...
- HDU 2096 小明A+B --- 水题
HDU 2096 /* HDU 2096 小明A+B --- 水题 */ #include <cstdio> int main() { #ifdef _LOCAL freopen(&quo ...
- HDU 1248 寒冰王座(全然背包:入门题)
HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...
- HDU 4998 (点的旋转) Rotate
为了寻找等效旋转操作,我们任选两个点P0和Q0,分别绕这n个点旋转一定的角度后最终得到Pn和Qn 然后已知:P0和Pn共圆,Q0和Qn共圆.所以要找的等效旋转点就是这两个线段的垂直平分线交点O. 等效 ...
- hdu 4998 矩阵表示旋转
http://acm.hdu.edu.cn/showproblem.php?pid=4998 http://blog.csdn.net/wcyoot/article/details/33310329 ...
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 4998
http://acm.hdu.edu.cn/showproblem.php?pid=4998 这道题,在比赛的时候看了很久,才明白题目的大意.都怪自己不好好学习英语.后来经过队友翻译才懂是什么意思. ...
随机推荐
- jupyter的控件交互
jupyter实现控件交互 jupyter notebook 是一个交互式IDE 直接上jupyter notebook界面截图
- ingress之tls和path使用
ingress tls 上节课给大家展示了 traefik 的安装使用以及简单的 ingress 的配置方法,这节课我们来学习一下 ingress tls 以及 path 路径在 ingress 对象 ...
- gin获取全部参数
原文链接:https://blog.csdn.net/keyunq/article/details/82226280 一直都是用结构体接收参数,假如事先不清楚参数名,或者参数是不固定的,就要动态获取. ...
- php 获取城市ip
/** * 获取ip城市信息 * CreateBy XueSong * @param string $ip * @return array|bool|mixed */ function getCity ...
- docker 入门4 - 群 【翻译】
开始,第 4 部分:群 先决条件 安装 Docker 版本 1.13 或更高版本. 获取第 3 部分先决条件中所述的 Docker Compose. 获取 Docker Machine, Mac 的 ...
- 一个下午整理的Web前端常见的英文缩写
PV (Page View)页面浏览量 FED(Front-End Development)前端开发 F2E(Front-End Engineer)前端工程师 WWW(World Wide Web)万 ...
- kali linux 安装 qq (deepin-wine)
添加deeepin-wine 依赖 /etc/apt/sources.list: # Generated by deepin-installer deb http://mirrors.aliyun.c ...
- 主流RPC框架详解,以及与SOA、REST的区别
什么是RPC RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. 简言之,RPC使 ...
- Linux内核的arch目录
- deep_learning_学习资料
TensorFlow的55个经典案例:https://blog.csdn.net/xzy_thu/article/details/76220654 吴恩达机器学习: 1.序列学习:https://mo ...