hdu 4998 Rotate 点的旋转 银牌题
Rotate
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1232 Accepted Submission(s): 545
Special Judge
Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi.
Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π).
Of course, you should be able to figure out what is A and P :).
For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p.
We promise that the sum of all p's is differed at least 0.1 from the nearest multiplier of 2π.
T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π.
Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5.
3
0 0 1
1 1 1
2 2 1
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <map>
#include <bitset>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <set> #define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define CT continue
#define SC scanf const double eps=1e-8;
const double pi=acos(-1);
int cas,n; struct Point{
double x,y,pi;
void read(){
SC("%lf%lf%lf",&x,&y,&pi);
}
}p[15]; int dcmp(double a)
{
if(fabs(a)<eps) return 0;
else return a>0?1:-1;
} double dot(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
} double Length(Point a)
{
return sqrt(a.x*a.x+a.y*a.y);
} Point operator*(double k,Point a)
{
return (Point){k*a.x,k*a.y,0};
} Point operator-(Point a,Point b)
{
return (Point){a.x-b.x,a.y-b.y,0};
} Point operator+(Point a,Point b)
{
return (Point){a.x+b.x,a.y+b.y,0};
} Point Rotate(Point a,double rad)
{
return (Point){a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad),0};
} Point Normal(Point a)
{
double L=Length(a);
return (Point){-a.y/L,a.x/L,0};
} void R(Point &s,Point &t,Point &nor,Point &mid)
{
s=p[0];
for(int i=1;i<=n;i++){
Point v=p[0]-p[i];
v=Rotate(v,p[i].pi);
p[0]=p[i]+v;
}
t=p[0];
nor=Normal(t-s),mid=(Point){(s.x+t.x)/2,(s.y+t.y)/2,0};
} double cross(Point a,Point b)
{
return a.x*b.y-b.x*a.y;
} Point Getlineintersection(Point p,Point v,Point q,Point w)
{
Point u=p-q;
double t=cross(w,u)/cross(v,w);
return p+t*v;
} int main()
{
SC("%d",&cas);
while(cas--)
{
SC("%d",&n);
for(int i=1;i<=n;i++) p[i].read();
Point s1,t1,s2,t2,nor1,nor2,mid1,mid2,o;
p[0]={12,9,0};
R(s1,t1,nor1,mid1);
p[0]={3,17,0};
R(s2,t2,nor2,mid2); o=Getlineintersection(mid1,nor1,mid2,nor2);
Point os=s1-o,ot=t1-o; double ang,ang1=atan2(os.y,os.x),ang2=atan2(ot.y,ot.x);
if(dcmp(ang1-ang2)>0) ang=ang1-ang2;
else ang=ang2-ang1; if(dcmp(cross(t1-s1,o-s1))>0){
if(dcmp(ang-pi)>0) ang=2*pi-ang;
}
else {
if(dcmp(pi-ang)>0) ang=2*pi-ang;
} if(dcmp(o.x)==0) o.x=0;
if(dcmp(o.y)==0) o.y=0;
printf("%.10f %.10f %.10f\n",o.x,o.y,ang);
}
return 0;
}
1.因为题目保证有解,所以在平面上任取两点,求出旋转后的弧度,那么最后选装的圆心必定在两条
从起点到终点的中垂线上
2.找到圆心后,再依据圆心在向量st的左侧还是右侧确定旋转的弧度是>pi还是小于pi。
3.最后因为double表示数据时,0可能是2*1e-30,按%.10f输出则是-0.00000000,所以需要
在最后判断一下。
hdu 4998 Rotate 点的旋转 银牌题的更多相关文章
- HDU 4998 Rotate (计算几何)
HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...
- HDU 4998 Rotate --几何
题意:给n个点(x,y,p),从1~n,一次每次所有点绕着第 i 个点(原来的)逆时针转pi个弧度,问最后所有点的位置相当于绕哪个点旋转多少弧度,求出那点X和弧度P 解法:直接模拟旋转,每次计算新的坐 ...
- HDU 4998 Rotate
题意: n次旋转 每次平面绕ai点旋转pi弧度 问 最后状态相当于初始状态绕A点旋转P弧度 A和P是多少 思路: 如果初始X点的最后状态为X'点 则圆心一定在X和X'连线的垂直平分线上 那 ...
- HDU 2096 小明A+B --- 水题
HDU 2096 /* HDU 2096 小明A+B --- 水题 */ #include <cstdio> int main() { #ifdef _LOCAL freopen(&quo ...
- HDU 1248 寒冰王座(全然背包:入门题)
HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...
- HDU 4998 (点的旋转) Rotate
为了寻找等效旋转操作,我们任选两个点P0和Q0,分别绕这n个点旋转一定的角度后最终得到Pn和Qn 然后已知:P0和Pn共圆,Q0和Qn共圆.所以要找的等效旋转点就是这两个线段的垂直平分线交点O. 等效 ...
- hdu 4998 矩阵表示旋转
http://acm.hdu.edu.cn/showproblem.php?pid=4998 http://blog.csdn.net/wcyoot/article/details/33310329 ...
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 4998
http://acm.hdu.edu.cn/showproblem.php?pid=4998 这道题,在比赛的时候看了很久,才明白题目的大意.都怪自己不好好学习英语.后来经过队友翻译才懂是什么意思. ...
随机推荐
- java7:核心技术与最佳实践读书笔记——字节代码格式
一般流程:开发人员写出java源代码(.java) -> javac(编译器) -> java字节代码(.class) -> 加载 -> java虚拟机(jvm)运行. 1. ...
- Docker 启动SQLServer
1.运行这个命令 docker run -d -e SA_PASSWORD=Docker123 -e SQLSERVER_DATABASE=qgb -e SQLSERVER_USER=sa -e ...
- Nginx用法详解
nginx作为一个高性能的web服务器,想必大家垂涎已久,蠢蠢欲动,想学习一番了吧,语法不多说,网上一大堆.下面博主就nginx的非常常用的几个功能做一些讲述和分析,学会了这几个功能,平常的开发和部署 ...
- MySQL自测测试
#建学生信息表student create table student ( sno varchar(20) not null primary key, sname varchar(20) not nu ...
- 解决npm ERR!Unexpected end of JSON input while paring near (解析附近时JSON输入意外结束)'...."^2.0.0-rc.0","glob"'等npm install错误
摘要 最近更新了一次node,但是更新后npm的命令总是会报 npm WARN deprecated fsevents@2.0.6: Please update: there are crash fi ...
- 微信小程序异步回调
场景如下:现有一个方法需要等待其他N个异步函数执行完毕后执行,callback麻烦的头大,翻了一波API原来小程序已经支持 async函数,那一切就好办了. 废话不多说,直接开始撸... 第一步:打开 ...
- docker第一篇 容器技术入门
Container 容器是一种基础工具,泛指任何可以容纳其它物品的工具. Linux Namespaces (docker容器技术主要是通过6个隔离技术来实现) namespace 系统调用参数 ...
- H5存储方式
数据存储 var arr = [0, 1, 1, 1]; //存储,IE6~7 cookie 其他浏览器HTML5本地存储 if (window.localStorage) { localStorag ...
- 如何使用JDBC连接数据库
1 JDBC:java database connectivity,是java程序与数据库系统通信的标准api 2 下载mysql JDBC驱动,解压缩找到mysql-connector-java-5 ...
- 数据库 master拒绝了 create database 权限
1.通过windows身份验证方式登录 2.为登录名赋予服务器角色权限,其中dbcreator权限表示允许新增和修改权限,sysadmin权限是管理员权限,包含dbcreator范围,若不追求权限精准 ...