full binary tree is a binary tree where each node has exactly 0 or 2 children.

Return a list of all possible full binary trees with N nodes.  Each element of the answer is the root node of one possible tree.

Each node of each tree in the answer must have node.val = 0.

You may return the final list of trees in any order.

Example 1:

Input: 7
Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
Explanation:

Runtime: 104 ms, faster than 53.23% of C++ online submissions for All Possible Full Binary Trees.

用map来优化。

class Solution {
private:
unordered_map<int,vector<TreeNode*>> mp;
public:
vector<TreeNode*> allPossibleFBT(int N) {
vector<TreeNode*> ret, leftvec, rightvec;
if(N & == || N <= ) return ret;
return helper(N);
}
vector<TreeNode*> helper(int N){
vector<TreeNode*> leftvec, rightvec, ret;
if(mp.count(N)) return mp[N];
if(N == ) return {new TreeNode()};
for(int i=; i < N; i+=){
leftvec = helper(i);
rightvec = helper(N - i -);
//cout << leftvec.size() << rightvec.size() << endl;
for(int l = ; l<leftvec.size();l++){
for(int r = ; r<rightvec.size();r++){
TreeNode* tmp = new TreeNode();
tmp->left = leftvec[l];
tmp->right = rightvec[r];
ret.push_back(tmp);
}
}
}
//cout << ret.size() << endl;
mp[N] = ret;
return ret;
}
};

LC 894. All Possible Full Binary Trees的更多相关文章

  1. [LeetCode] 894. All Possible Full Binary Trees 所有可能的满二叉树

    A full binary tree is a binary tree where each node has exactly 0 or 2 children. Return a list of al ...

  2. 【LeetCode】894. All Possible Full Binary Trees 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  3. Leetcode 894. All Possible Full Binary Trees

    递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # ...

  4. 17. Merge Two Binary Trees 融合二叉树

    [抄题]: Given two binary trees and imagine that when you put one of them to cover the other, some node ...

  5. hdu3240 Counting Binary Trees

    Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  6. Binary Trees

    1. Definiation What is Binary Trees? Collection of node (n>=0) and in which no node can have more ...

  7. [leetcode-617-Merge Two Binary Trees]

    Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...

  8. Merge Two Binary Trees

    Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...

  9. [LeetCode] Merge Two Binary Trees 合并二叉树

    Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...

随机推荐

  1. JavaJDBC【二、Mysql包加载与使用】

    连接数据库前提条件是: 1.加载mysql驱动 2.获取连接 加载驱动前需要将mysql的jar包引入项目 Demo: package JDBC; import java.sql.DriverMana ...

  2. ath6kl 架构

    转:http://blog.csdn.net/robertsong2004/article/details/38899415 AR600x软件被划分为主机端和目标端软件.主机端软件或驱动程序的代码被提 ...

  3. 《python解释器源码剖析》第6章--python中的dict对象

    6.0 序 元素和元素之间可能存在着某种关系,比如学生姓名和成绩.我希望能够通过学生的姓名找到这个学生的成绩,那么只需要将两者关联起来即可.字典正是这么做的,字典中的每个元素就是一个key:value ...

  4. Eclispe造成的tomcat占用端口 无法启动 强制终止进程 转载

    很多时候运行tomcat 的时候总是会提示tomcat 的端口被占用 但是任务管理器里面还找不到是哪个端口被占用了 因此很多人就重新配置tomcat  或者去修改tomcat的端口号 ,其实这么做太麻 ...

  5. BZOJ 1006 完美消除序列&最大势算法&弦图

    K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关系 ...

  6. python 获取安装包apk, ipa 信息

    # -*- coding:utf-8 -*- import re import os import zipfile from biplist import * from androguard.core ...

  7. SAP 选择屏幕的上方 (sscrfields) 按钮设置

    TABLES sscrfields. PARAMETERS: p_carrid TYPE s_carr_id, p_cityfr TYPE s_from_cit. , "激活按钮 . INI ...

  8. CMD命令集锦

          1. gpedit.msc-----组策略 2. sndrec32-------录音机 3. Nslookup-------IP地址侦测器 ,是一个 监测网络中 DNS 服务器是否能正确实 ...

  9. Junit(手动/自动)加载

    ssm中测试service层数据 Junit手动加载配置文件 package com.oukele.bookshop_ssm.service; import org.junit.After; impo ...

  10. Java-FileUploadUtil工具类

    package com.gootrip.util; import java.io.File; import java.util.*; import org.apache.commons.fileupl ...