西安区域赛 D.Miku and Generals 二分图+背包
Miku and Generals
Describe
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, so Fuutaro always plays a kind of card game about generals with her. In this game, the players pick up cards with generals, but some generals have contradictions and cannot be in the same side. Every general has a certain value of attack power (can be exactly divided by \(100\) ), and the player with higher sum of values will win. In this game all the cards should be picked up.
This day Miku wants to play this game again. However, Fuutaro is busy preparing an exam, so he decides to secretly control the game and decide each card's owner. He wants Miku to win this game so he won't always be bothered, and the difference between their value should be as small as possible. To make Miku happy, if they have the same sum of values, Miku will win. He must get a plan immediately and calculate it to meet the above requirements, how much attack value will Miku have?
As we all know, when Miku shows her loveliness, Fuutaro's IQ will become \(0\) . So please help him figure out the answer right now!
Input
Each test file contains several test cases. In each test file:
The first line contains a single integer \(T(1 \le T \le 10)\)which is the number of test cases.
For each test case, the first line contains two integers: the number of generals \(N(2 \le N \le 200)\)and thenumber of pairs of generals that have contradictions \(M(0 \le M \le 200)\).
The second line contains \(N\) integers, and the iii-th integer is \(c_i\), which is the attack power value of the iii-th general \((0 \le c_i \le 5\times 10^4)\).
The following \(M\) lines describe the contradictions among generals. Each line contains two integers AAA and BBB , which means general AAA and BBB cannot be on the same side \((1 \le A , B \le N)\).
The input data guarantees that the solution exists.
Output
For each test case, you should print one line with your answer.
Hint
In sample test case, Miku will get general 2 and 3 .
样例输入
1
4 2
1400 700 2100 900
1 3
3 4
样例输出
2800
题意
给你n个数,把他们分成两组使得差值最小,求较大那组权值和。有些数不能在一起,保证有解。
题解
先二分图染色,也可以并查集(我考场用并查集写的,结果WA到结束,所以对并查集产生了阴影qwq)。
然后就是一个比较裸的可行性背包,背包容量为sum/2。
如果不会背包,可以先做这道相似的背包题:https://www.luogu.org/problemnew/show/P1282
(我一开始统计方案数,一直WA,原来是方案数报爆int 了,真是伤心,还是fwl大佬看出来的)
代码
#include<bits/stdc++.h>
using namespace std;
#define N 205
#define M 205
#define V 50050
int n,m,a[N],f[N],val[N][3],bh[N],dp[2][V];
int tot,last[N];
struct Edge{int from,to,s;}edges[M<<1];
template<typename T> void read(T &x)
{
int k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void AddEdge(int x,int y)
{
edges[++tot]=Edge{x,y,last[x]};
last[x]=tot;
}
void dfs(int x,int id)
{
f[x]=1;
bh[x]=id;
for(int i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (!f[e.to])dfs(e.to,-id);
}
}
void work()
{
memset(f,0,sizeof(f));
memset(val,0,sizeof(val));
memset(dp,0,sizeof(dp));
memset(last,0,sizeof(last));//
tot=0;
int sum=0,num=0;
read(n); read(m);
for(int i=1;i<=n;i++)read(a[i]),a[i]/=100,sum+=a[i];
for(int i=1;i<=m;i++)
{
int x,y;
read(x); read(y);
AddEdge(x,y);
AddEdge(y,x);
}
for(int i=1;i<=n;i++)if (!f[i])dfs(i,++num);
for(int i=1;i<=n;i++)val[abs(bh[i])][bh[i]/abs(bh[i])+1]+=a[i];
int selfsum=sum/2,k=0;
dp[k][0]=1;
for(int i=1;i<=num;i++)
{
k^=1;
for(int j=selfsum;j>=0;j--)
{
if (j-val[i][0]>=0&&dp[1-k][j-val[i][0]]>0) dp[k][j]=1;
else
if (j-val[i][2]>=0&&dp[1-k][j-val[i][2]]>0) dp[k][j]=1;
else dp[k][j]=0;
if (i==num&&dp[k][j]>0){printf("%d\n",max(j,(sum-j))*100);return;}
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int q;read(q); while(q--)work();}
西安区域赛 D.Miku and Generals 二分图+背包的更多相关文章
- 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并
题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...
- ACM-ICPC 2019 西安邀请赛 D.Miku and Generals(二分图+可行性背包)
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)
Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- UVALive 8519 Arrangement for Contests 2017西安区域赛H 贪心+线段树优化
题意 等价于给一个数列,每次对一个长度为$K$的连续区间减一 为最多操作多少次 题解: 看样例猜的贪心,10分钟敲了个线段树就交了... 从1开始,找$[i,i+K]$区间的最小值,然后区间减去最小值 ...
- UVALive 8513 lovers 2017 西安区域赛 B 贪心+multiset
UVALive 8513 有2种人,每个人有自己的权值$A_i$ $B_i$ 当$A_i + B_i >=K$时 两个人可以配对 问最多多少人可以配对 解法 : 把$/{ A_i /}$ 排序 ...
- 2014年西安区域赛的几道水题(A. F. K)
A . 问一组数能否全部被3整除 K. S1 = A, S2 = B, Si = |Si-1 - Si-2|; 一直循环问, 出现了多少不同的数: 多模拟几组数, 可以发现和辗转相除法有很大关系 ...
- 14西安区域赛C - The Problem Needs 3D Arrays
最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...
- 2017 ICPC西安区域赛 A - XOR (线段树并线性基)
链接:https://nanti.jisuanke.com/t/A1607 题面: Consider an array AA with n elements . Each of its eleme ...
- 2019 ICPC 上海区域赛总结
2019上海区域赛现场赛总结 补题情况(以下通过率为牛客提交): 题号 标题 已通过代码 通过率 我的状态 A Mr. Panda and Dominoes 点击查看 5/29 未通过 B Prefi ...
随机推荐
- Try-Catch-Finally代码块中的return
测试类的原型是这样子的 public class TryCatchFinallyToReturn { public static void main(String[] args) { System.o ...
- Pstools使用
pstool的介绍 PsTools是Sysinternals Suite中一款排名靠前的一个安全管理工具套件.现在被微软收购.目前pstools中含有12款各式各样的小工具.如果将它们灵活的运用,将会 ...
- 应用fluent二维单向流泥沙冲刷作用下河床变形代码【转载】
本代码转载自:http://www.codeforge.cn/read/260028/keti_2d_b.c__html #include "udf.h" #define Rho ...
- POI的XWPFTable的方法总结
1. void addNewCol(): 为该表中的每一行添加一个新列 2. void addRow(XWPFTableRow row): 向表中添加新行 3. boolean addRow(XWP ...
- 怎样在VMware虚拟机中使用安装并设置Ubuntu系统
1 2 3 4 5 6 7 分步阅读 Ubuntu 系统是一款优秀的.基于GNU/Linux 的平台的桌面系统. 当然,目前为止很多应用程序还完全不能允许运行在 Ubuntu 系统上,而且 Ubunt ...
- 【SpringBoot】转载 springboot使用thymeleaf完成数据的页面展示
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_36380516/artic ...
- numpy中flatten学习笔记
ndarray.flatten() 用法 用于返回一个折叠成一维的数组.该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的. 例子 # coding=utf-8 fro ...
- 阶段5 3.微服务项目【学成在线】_day04 页面静态化_21-页面静态化-静态化测试-静态化程序编写
public String getPageHtml(String pageId){ /** * 静态化程序获取页面的DataUrl * * 静态化程序远程请求DataUrl获取数据模型 * * 静态化 ...
- php错误机制总结
转 http://www.cnblogs.com/yjf512/p/5314345.html
- orac l e数据库第一章
数据库两种权限: 1.系统权限 2.对象权限 数据库端口号: SQL SERVER 1433 MySql 3306 ...