Miku and Generals

Describe

“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, so Fuutaro always plays a kind of card game about generals with her. In this game, the players pick up cards with generals, but some generals have contradictions and cannot be in the same side. Every general has a certain value of attack power (can be exactly divided by \(100\) ), and the player with higher sum of values will win. In this game all the cards should be picked up.

This day Miku wants to play this game again. However, Fuutaro is busy preparing an exam, so he decides to secretly control the game and decide each card's owner. He wants Miku to win this game so he won't always be bothered, and the difference between their value should be as small as possible. To make Miku happy, if they have the same sum of values, Miku will win. He must get a plan immediately and calculate it to meet the above requirements, how much attack value will Miku have?

As we all know, when Miku shows her loveliness, Fuutaro's IQ will become \(0\) . So please help him figure out the answer right now!

Input

Each test file contains several test cases. In each test file:

The first line contains a single integer \(T(1 \le T \le 10)\)which is the number of test cases.

For each test case, the first line contains two integers: the number of generals \(N(2 \le N \le 200)\)and thenumber of pairs of generals that have contradictions⁡ \(M(0 \le M \le 200)\).

The second line contains \(N\) integers, and the iii-th integer is \(c_i\), which is the attack power value of the iii-th general \((0 \le c_i \le 5\times 10^4)\).

The following \(M\) lines describe the contradictions among generals. Each line contains two integers AAA and BBB , which means general AAA and BBB cannot be on the same side \((1 \le A , B \le N)\).

The input data guarantees that the solution exists.

Output

For each test case, you should print one line with your answer.

Hint

In sample test case, Miku will get general 2 and 3 .

样例输入

1

4 2

1400 700 2100 900

1 3

3 4

样例输出

2800

题意

给你n个数,把他们分成两组使得差值最小,求较大那组权值和。有些数不能在一起,保证有解。

题解

先二分图染色,也可以并查集(我考场用并查集写的,结果WA到结束,所以对并查集产生了阴影qwq)。

然后就是一个比较裸的可行性背包,背包容量为sum/2。

如果不会背包,可以先做这道相似的背包题:https://www.luogu.org/problemnew/show/P1282

(我一开始统计方案数,一直WA,原来是方案数报爆int 了,真是伤心,还是fwl大佬看出来的)

代码

#include<bits/stdc++.h>
using namespace std;
#define N 205
#define M 205
#define V 50050
int n,m,a[N],f[N],val[N][3],bh[N],dp[2][V];
int tot,last[N];
struct Edge{int from,to,s;}edges[M<<1];
template<typename T> void read(T &x)
{
int k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void AddEdge(int x,int y)
{
edges[++tot]=Edge{x,y,last[x]};
last[x]=tot;
}
void dfs(int x,int id)
{
f[x]=1;
bh[x]=id;
for(int i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (!f[e.to])dfs(e.to,-id);
}
}
void work()
{
memset(f,0,sizeof(f));
memset(val,0,sizeof(val));
memset(dp,0,sizeof(dp));
memset(last,0,sizeof(last));//
tot=0;
int sum=0,num=0;
read(n); read(m);
for(int i=1;i<=n;i++)read(a[i]),a[i]/=100,sum+=a[i];
for(int i=1;i<=m;i++)
{
int x,y;
read(x); read(y);
AddEdge(x,y);
AddEdge(y,x);
}
for(int i=1;i<=n;i++)if (!f[i])dfs(i,++num);
for(int i=1;i<=n;i++)val[abs(bh[i])][bh[i]/abs(bh[i])+1]+=a[i];
int selfsum=sum/2,k=0;
dp[k][0]=1;
for(int i=1;i<=num;i++)
{
k^=1;
for(int j=selfsum;j>=0;j--)
{
if (j-val[i][0]>=0&&dp[1-k][j-val[i][0]]>0) dp[k][j]=1;
else
if (j-val[i][2]>=0&&dp[1-k][j-val[i][2]]>0) dp[k][j]=1;
else dp[k][j]=0;
if (i==num&&dp[k][j]>0){printf("%d\n",max(j,(sum-j))*100);return;}
}
} }
int main(){
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int q;read(q); while(q--)work();}

西安区域赛 D.Miku and Generals 二分图+背包的更多相关文章

  1. 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并

    题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...

  2. ACM-ICPC 2019 西安邀请赛 D.Miku and Generals(二分图+可行性背包)

    “Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...

  3. 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)

    Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...

  4. UVALive 8519 Arrangement for Contests 2017西安区域赛H 贪心+线段树优化

    题意 等价于给一个数列,每次对一个长度为$K$的连续区间减一 为最多操作多少次 题解: 看样例猜的贪心,10分钟敲了个线段树就交了... 从1开始,找$[i,i+K]$区间的最小值,然后区间减去最小值 ...

  5. UVALive 8513 lovers 2017 西安区域赛 B 贪心+multiset

    UVALive 8513 有2种人,每个人有自己的权值$A_i$ $B_i$ 当$A_i + B_i >=K$时 两个人可以配对 问最多多少人可以配对 解法 : 把$/{ A_i /}$ 排序 ...

  6. 2014年西安区域赛的几道水题(A. F. K)

    A . 问一组数能否全部被3整除 K. S1 = A, S2 = B, Si = |Si-1  -  Si-2|; 一直循环问, 出现了多少不同的数: 多模拟几组数, 可以发现和辗转相除法有很大关系 ...

  7. 14西安区域赛C - The Problem Needs 3D Arrays

    最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...

  8. 2017 ICPC西安区域赛 A - XOR (线段树并线性基)

    链接:https://nanti.jisuanke.com/t/A1607 题面:   Consider an array AA with n elements . Each of its eleme ...

  9. 2019 ICPC 上海区域赛总结

    2019上海区域赛现场赛总结 补题情况(以下通过率为牛客提交): 题号 标题 已通过代码 通过率 我的状态 A Mr. Panda and Dominoes 点击查看 5/29 未通过 B Prefi ...

随机推荐

  1. linux crontab 防止周期内为执行完成重复执行

    问题的背景: 我们常常需要通过crontab部署某个脚本运行某些定时任务,但在实际的过程中,一旦处理不好可能导致在同一时刻出现脚本的多个运行副本,比如crontab的调度是每5 分钟运行一次脚本,如果 ...

  2. Jumbled String (Kattis - jumbledstring)(思维题)

    Problem Recall that a subsequence of a string is any string obtained by removing some subset of char ...

  3. scrapy框架之spider

    爬取流程 Spider类定义如何爬取指定的一个或多个网站,包括是否要跟进网页里的链接和如何提取网页内容中的数据. 爬取的过程是类似以下步骤的循环: 1.通过指定的初始URL初始化Request,并指定 ...

  4. 多层树级关系的json,递归删除空值的数据

    data =[{ "name": "省", "children":[ { "name": "市区", ...

  5. 一台服务器配置多个mysql实例

    在公司资源紧张的情况下,需要在一台服务器上部署多个数据库实例,现在就来实战一下该情况. 需要启动两个不同的端口,分别是3306和3307 [root@node1 ~]# mkdir /u01/mysq ...

  6. MGR---mysql组复制多主模式

    组复制有两种模式:单主模式和多主模式. 1.在单主模式下,组复制具有自动选主功能,每次只有一个 server成员接受更新.2.在多主模式下,所有的 server 成员都可以同时接受更新. MGR的限制 ...

  7. Unknown system variable 'query_cache_size'

    java连接mysql 报错 java.sql.SQLException: Unknown system variable 'query_cache_size'at com.mysql.cj.jdbc ...

  8. busybox中memdev的使用方法

    busybox中已经集成了devmem工具,你可以配置busybox即可. 在busybox的杂项中找到: CONFIG_USER_BUSYBOX_DEVMEM: devmem is a small ...

  9. Http的请求协议请求行介绍

    请求协议包含的内容 请求行 GET /day04-tomcat/index.jsp HTTP/1.1 HTTP/1.1: 表示的是我们使用的是http协议的1.1版本 请求头 请求空行 请求体: 存储 ...

  10. centos下使用virtualenv建立python虚拟环境

    在centos使用python3的virtualenv,先用yum install python3 安装后pip3也已经安装好了,pip3 install virtualenv, 在系统中新建一个空文 ...