西安区域赛 D.Miku and Generals 二分图+背包
Miku and Generals
Describe
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, so Fuutaro always plays a kind of card game about generals with her. In this game, the players pick up cards with generals, but some generals have contradictions and cannot be in the same side. Every general has a certain value of attack power (can be exactly divided by \(100\) ), and the player with higher sum of values will win. In this game all the cards should be picked up.
This day Miku wants to play this game again. However, Fuutaro is busy preparing an exam, so he decides to secretly control the game and decide each card's owner. He wants Miku to win this game so he won't always be bothered, and the difference between their value should be as small as possible. To make Miku happy, if they have the same sum of values, Miku will win. He must get a plan immediately and calculate it to meet the above requirements, how much attack value will Miku have?
As we all know, when Miku shows her loveliness, Fuutaro's IQ will become \(0\) . So please help him figure out the answer right now!
Input
Each test file contains several test cases. In each test file:
The first line contains a single integer \(T(1 \le T \le 10)\)which is the number of test cases.
For each test case, the first line contains two integers: the number of generals \(N(2 \le N \le 200)\)and thenumber of pairs of generals that have contradictions \(M(0 \le M \le 200)\).
The second line contains \(N\) integers, and the iii-th integer is \(c_i\), which is the attack power value of the iii-th general \((0 \le c_i \le 5\times 10^4)\).
The following \(M\) lines describe the contradictions among generals. Each line contains two integers AAA and BBB , which means general AAA and BBB cannot be on the same side \((1 \le A , B \le N)\).
The input data guarantees that the solution exists.
Output
For each test case, you should print one line with your answer.
Hint
In sample test case, Miku will get general 2 and 3 .
样例输入
1
4 2
1400 700 2100 900
1 3
3 4
样例输出
2800
题意
给你n个数,把他们分成两组使得差值最小,求较大那组权值和。有些数不能在一起,保证有解。
题解
先二分图染色,也可以并查集(我考场用并查集写的,结果WA到结束,所以对并查集产生了阴影qwq)。
然后就是一个比较裸的可行性背包,背包容量为sum/2。
如果不会背包,可以先做这道相似的背包题:https://www.luogu.org/problemnew/show/P1282
(我一开始统计方案数,一直WA,原来是方案数报爆int 了,真是伤心,还是fwl大佬看出来的)
代码
#include<bits/stdc++.h>
using namespace std;
#define N 205
#define M 205
#define V 50050
int n,m,a[N],f[N],val[N][3],bh[N],dp[2][V];
int tot,last[N];
struct Edge{int from,to,s;}edges[M<<1];
template<typename T> void read(T &x)
{
int k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void AddEdge(int x,int y)
{
edges[++tot]=Edge{x,y,last[x]};
last[x]=tot;
}
void dfs(int x,int id)
{
f[x]=1;
bh[x]=id;
for(int i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (!f[e.to])dfs(e.to,-id);
}
}
void work()
{
memset(f,0,sizeof(f));
memset(val,0,sizeof(val));
memset(dp,0,sizeof(dp));
memset(last,0,sizeof(last));//
tot=0;
int sum=0,num=0;
read(n); read(m);
for(int i=1;i<=n;i++)read(a[i]),a[i]/=100,sum+=a[i];
for(int i=1;i<=m;i++)
{
int x,y;
read(x); read(y);
AddEdge(x,y);
AddEdge(y,x);
}
for(int i=1;i<=n;i++)if (!f[i])dfs(i,++num);
for(int i=1;i<=n;i++)val[abs(bh[i])][bh[i]/abs(bh[i])+1]+=a[i];
int selfsum=sum/2,k=0;
dp[k][0]=1;
for(int i=1;i<=num;i++)
{
k^=1;
for(int j=selfsum;j>=0;j--)
{
if (j-val[i][0]>=0&&dp[1-k][j-val[i][0]]>0) dp[k][j]=1;
else
if (j-val[i][2]>=0&&dp[1-k][j-val[i][2]]>0) dp[k][j]=1;
else dp[k][j]=0;
if (i==num&&dp[k][j]>0){printf("%d\n",max(j,(sum-j))*100);return;}
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int q;read(q); while(q--)work();}
西安区域赛 D.Miku and Generals 二分图+背包的更多相关文章
- 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并
题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...
- ACM-ICPC 2019 西安邀请赛 D.Miku and Generals(二分图+可行性背包)
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)
Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- UVALive 8519 Arrangement for Contests 2017西安区域赛H 贪心+线段树优化
题意 等价于给一个数列,每次对一个长度为$K$的连续区间减一 为最多操作多少次 题解: 看样例猜的贪心,10分钟敲了个线段树就交了... 从1开始,找$[i,i+K]$区间的最小值,然后区间减去最小值 ...
- UVALive 8513 lovers 2017 西安区域赛 B 贪心+multiset
UVALive 8513 有2种人,每个人有自己的权值$A_i$ $B_i$ 当$A_i + B_i >=K$时 两个人可以配对 问最多多少人可以配对 解法 : 把$/{ A_i /}$ 排序 ...
- 2014年西安区域赛的几道水题(A. F. K)
A . 问一组数能否全部被3整除 K. S1 = A, S2 = B, Si = |Si-1 - Si-2|; 一直循环问, 出现了多少不同的数: 多模拟几组数, 可以发现和辗转相除法有很大关系 ...
- 14西安区域赛C - The Problem Needs 3D Arrays
最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...
- 2017 ICPC西安区域赛 A - XOR (线段树并线性基)
链接:https://nanti.jisuanke.com/t/A1607 题面: Consider an array AA with n elements . Each of its eleme ...
- 2019 ICPC 上海区域赛总结
2019上海区域赛现场赛总结 补题情况(以下通过率为牛客提交): 题号 标题 已通过代码 通过率 我的状态 A Mr. Panda and Dominoes 点击查看 5/29 未通过 B Prefi ...
随机推荐
- 敌兵布阵(HDU 1166)
Problem Description C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任 ...
- 1656:Combination
一本通1656:Combination 1656:Combination 时间限制: 1000 ms 内存限制: 524288 KB提交数: 89 通过数: 49 [题目描述] ...
- Linux之防火墙【CentOS 7】
CentOS 7默认使用的是firewall作为防火墙,这里改为iptables防火墙. firewall操作: # service firewalld status; #查看防火墙状态 (disab ...
- scrapy框架之log日志
scrapy中的debug信息 在scrapy中设置log 1.在settings中设置log级别,在settings.py中添加一行: Scrapy提供5层logging级别: CRITICAL - ...
- AcWing:242. 一个简单的整数问题(树状数组)
给定长度为N的数列A,然后输入M行操作指令. 第一类指令形如“C l r d”,表示把数列中第l~r个数都加d. 第二类指令形如“Q X”,表示询问数列中第x个数的值. 对于每个询问,输出一个整数表示 ...
- storm java环境变量设置
storm启动时会加载conf/storm-env.sh文件 编辑 conf/storm-env.sh 添加export JAVA_HOME=/usr/java/jdk1.8.0_111
- springboot实现异步调用
介绍 所谓的异步执行其实就是使用多线程的方式实现异步调用. 异步有什么好处呢? 如果一个业务逻辑执行完成需要多个步骤,也就是调用多个方法去执行, 这个时候异步执行比同步执行相应更快.不过要注意异步请求 ...
- PyTricks-使用namedtuple以及dataclass的方式定义类
from collections import namedtuple from dataclasses import dataclass # 以前简单的类可以使用namedtuple实现. Car = ...
- CISCO实验记录七:OSPF
一.要求 1.使用OSPF创建路由表 2.查看OSPF邻居 二.实现 1.使用OSPF创建路由表 #router ospf 1 #network 192.168.1.0 0.0.0.255 area ...
- vagrant box镜像百度下载地址
1.centos7 链接:https://pan.baidu.com/s/1JuIUo4HL0lm1EtUKaoMpaA提取码:w9a8 2.vagrant-ubuntu-server-16.04-x ...