使用线段树合并,每个节点维护一棵权值线段树,下标为救济粮种类,区间维护数量最多的救济粮编号(下标)。所以每个节点答案即为\(tre[rot[x]]\)。

然后运用树上点的差分思想,对于分发路径\(u,v\),我们在\(u\)上+1,在\(v\)+1,在\(lca(u,v)\)处-1,在\(fa(lca)\)处-1,最后统计时自底向上做树上前缀和、线段树合并即得当前节点信息。

需要注意的是,在合并时可能会出现\(tre[rot[x]]\)不为\(0\),但是\(sum[rot[x]]\)为\(0\)的情况,这时候表示编号为\(tre[rot[x]]\)的救济粮数量为\(0\),所以此时应该将\(ans[x]\)更新为\(0\)(根据题意)。

#include <cstdio>
#include <algorithm>
#define MAXN 100001
#define LOG 19
#define mxr 100000
using namespace std;
inline int read(){
char ch=getchar();int s=0;
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') s=s*10+(ch^'0'),ch=getchar();
return s;
}
int head[MAXN],nxt[MAXN*2],vv[MAXN*2],tot;
inline void add_edge(int u, int v){
vv[++tot]=v;
nxt[tot]=head[u];
head[u]=tot;
}
int n,m;
#define MAXM MAXN*80
int tre[MAXM],sum[MAXM],sl[MAXM],sr[MAXM],cnt;
void push_up(int x){
if(sl[x]==0){
sum[x]=sum[sr[x]];
tre[x]=tre[sr[x]];
return;
}
if(sr[x]==0){
sum[x]=sum[sl[x]];
tre[x]=tre[sl[x]];
return;
}
if(sum[sl[x]]>=sum[sr[x]]){
sum[x]=sum[sl[x]];
tre[x]=tre[sl[x]];
}else{
sum[x]=sum[sr[x]];
tre[x]=tre[sr[x]];
}
}
void change(int &x, int l, int r, int pos, int val){
if(x==0) x=++cnt;
if(l==r){
sum[x]+=val;
tre[x]=pos;
return;
}
int mid=(l+r)>>1;
if(pos<=mid) change(sl[x], l, mid, pos, val);
else change(sr[x], mid+1, r, pos, val);
push_up(x);
}
int merge(int a, int b, int l, int r){
if(a==0||b==0) return a+b;
if(l==r){
sum[a]+=sum[b];
return a;
}
int mid=(l+r)>>1;
sl[a]=merge(sl[a], sl[b], l, mid);
sr[a]=merge(sr[a], sr[b], mid+1, r);
push_up(a);
return a;
}
int f[MAXN][LOG],dep[MAXN];
void dfs(int u, int fa){
f[u][0]=fa;
dep[u]=dep[fa]+1;
for(int i=1;i<LOG;++i)
f[u][i]=f[f[u][i-1]][i-1];
for(int i=head[u];i;i=nxt[i]){
int v=vv[i];
if(v==fa) continue;
dfs(v, u);
}
}
int lca(int a, int b){
if(dep[a]<dep[b]) swap(a, b);
for(int i=LOG-1;i>=0;--i)
if(dep[f[a][i]]>=dep[b])
a=f[a][i];
if(a==b) return a;
for(int i=LOG-1;i>=0;--i)
if(f[a][i]!=f[b][i])
a=f[a][i],b=f[b][i];
return f[a][0];
}
int rot[MAXN],ans[MAXN];
void calc(int u, int fa){
for(int i=head[u];i;i=nxt[i]){
int v=vv[i];
if(v==fa) continue;
calc(v, u);
rot[u]=merge(rot[u], rot[v], 1, mxr);
}
ans[u]=tre[rot[u]];
if(sum[rot[u]]==0) ans[u]=0; // 特判没有救济粮的情况
}
int main(){
n=read(),m=read();
for(int i=1;i<n;++i){
int a=read(),b=read();
add_edge(a, b);
add_edge(b, a);
}
dfs(1, 0);
for(int i=1;i<=m;++i){
int a=read(),b=read(),x=read();
int l=lca(a, b);
change(rot[a], 1, mxr, x, 1);
change(rot[b], 1, mxr, x, 1);
change(rot[l], 1, mxr, x, -1);
change(rot[f[l][0]], 1, mxr, x, -1);
}
calc(1, 0);
for(int i=1;i<=n;++i) printf("%d\n", ans[i]);
return 0;
}

P4556 雨天的尾巴 线段树合并的更多相关文章

  1. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  2. 【BZOJ3307】雨天的尾巴 线段树合并

    [BZOJ3307]雨天的尾巴 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多 ...

  3. BZOJ3307雨天的尾巴——线段树合并

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入 第一行数字N,M接下来N ...

  4. 洛谷P4556 雨天的尾巴 线段树

    正解:线段树合并 解题报告: 传送门! 考虑对树上的每个节点开一棵权值线段树,动态开点,记录一个max(num,id)(这儿的id,define了一下,,,指的是从小到大排QAQ 然后修改操作可以考虑 ...

  5. bzoj 3307: 雨天的尾巴 线段树合并

    题目大意: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.问完成所有发放后,每个点存放最多的是哪种物品. 题解: 首先我们为每一个节 ...

  6. 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)

    题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...

  7. [BZOJ3307] 雨天的尾巴-----------------线段树进阶

    虽然是个板子,但用到了差分思想. Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最 ...

  8. 洛谷P4556 雨天的尾巴(线段树合并)

    洛谷P4556 雨天的尾巴 题目链接 题解: 因为一个点可能存放多种物品,直接开二维数组进行统计时间.空间复杂度都不能承受.因为每一个点所拥有的物品只与其子树中的点有关,所以可以考虑对每一个点来建立一 ...

  9. P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)

    P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...

随机推荐

  1. CH08 QSPI启动并从EMMC运行APP

    8.1 概述 在前一节课,我们必须手动挂载TF卡到mnt,然后输入./a.out程序才能启动.而在嵌入式系统里面,我们很多时候需要实现开机启动程序.很多时候我们会把程序固化到FLASH,然后从EMMC ...

  2. Windows服务器修改远程桌面默认端口

    一.打开注册表(通过开始菜单处输入命令输入 regedit回车即可打开注册表信息,或者Win键+R键打开输入框后输入regedit后回车) 二.打开注册表后,在左侧属性菜单进入下列路径“HKEY_LO ...

  3. Docker学习笔记导航帖

    1. Docker安装 安装docker https://www.cnblogs.com/kreo/p/10813010.html

  4. wcf Origin

    WebHttpBinding bd = new WebHttpBinding(); //WebServiceHost sh = new WebServiceHost(typeof(Bl_x), new ...

  5. 免root xshell连接termux

    免root实现xshell连接termux termux为安卓手机上的一款模拟linux终端的应用,由于手机上打字比较麻烦,所以想到了用电脑上的xshell通过ssh连接termux,以实现电脑控制t ...

  6. Django_rest_framework分页

    分页基本流程及配置 1.基于LimitOffsetPagination做分页,根据配置 from rest_framework.pagination import LimitOffsetPaginat ...

  7. react-native 沉浸式状态栏

    使用StatusBar即可实现沉浸式,但是必须把背景色设置为透明.否则如果有不同页面的头部颜色不一样的话,导航栏的颜色动画会很怪异,不会是跟着页面一起动画. <StatusBar barStyl ...

  8. PL/SQL Developer_如何快速获得表名或全部列名的文本形式

    转自:https://blog.csdn.net/xwnxwn/article/details/53388887 操作过程: 例1:以“逗号”格式获取“用户表名”的文本 使用scott登陆到PL/SQ ...

  9. 2019年6月车型数据Access数据库+缩略图 更新于2019年6月5日.

    工作需要才来采集的, 数据来源某卡汽车网, 分享出来给需要的人吧, 本着分享的精神, 我就不猥琐的放到csdn下载了 本来是sql server的, 我导出到access了, 也方便大家查看. 顺手抓 ...

  10. 2019.9.27,SAP成都研究院数字创新空间团队建设,射箭和游泳

    2019年9月27日,秋高气爽,SAP成都研究院数字创新团队全体成员又迎来了一次团队建设活动.这次的主题是:射箭. 在正式活动之前,大家先享用了一顿泰式海鲜火锅: 吃饱喝足之后,我们来到了名为&quo ...