P2863 [USACO06JAN]牛的舞会The Cow Prom

    • 123通过
    • 221提交
  • 题目提供者 洛谷OnlineJudge
  • 标签 USACO 2006 云端
  • 难度 普及+/提高
  • 时空限制 1s / 128MB

题目描述

The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their finest gowns, complete with corsages and new shoes. They know that tonight they will each try to perform the Round Dance.

Only cows can perform the Round Dance which requires a set of ropes and a circular stock tank. To begin, the cows line up around a circular stock tank and number themselves in clockwise order consecutively from 1..N. Each cow faces the tank so she can see the other dancers.

They then acquire a total of M (2 <= M <= 50,000) ropes all of which are distributed to the cows who hold them in their hooves. Each cow hopes to be given one or more ropes to hold in both her left and right hooves; some cows might be disappointed.

约翰的N (2 <= N <= 10,000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别 上鲜花,她们要表演圆舞.

只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的水池.奶牛们围在池边站好, 顺时针顺序由1到N编号.每只奶牛都面对水池,这样她就能看到其他的每一只奶牛.

为了跳这种圆舞,她们找了 M(2<M< 50000)条绳索.若干只奶牛的蹄上握着绳索的一端, 绳索沿顺时针方绕过水池,另一端则捆在另一些奶牛身上.这样,一些奶牛就可以牵引另一些奶 牛.有的奶牛可能握有很多绳索,也有的奶牛可能一条绳索都没有.

对于一只奶牛,比如说贝茜,她的圆舞跳得是否成功,可以这样检验:沿着她牵引的绳索, 找到她牵引的奶牛,再沿着这只奶牛牵引的绳索,又找到一只被牵引的奶牛,如此下去,若最终 能回到贝茜,则她的圆舞跳得成功,因为这一个环上的奶牛可以逆时针牵引而跳起旋转的圆舞. 如果这样的检验无法完成,那她的圆舞是不成功的.

如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.

给出每一条绳索的描述,请找出,成功跳了圆舞的奶牛有多少个组合?

For the Round Dance to succeed for any given cow (say, Bessie), the ropes that she holds must be configured just right. To know if Bessie's dance is successful, one must examine the set of cows holding the other ends of her ropes (if she has any), along with the cows holding the other ends of any ropes they hold, etc. When Bessie dances clockwise around the tank, she must instantly pull all the other cows in her group around clockwise, too. Likewise,

if she dances the other way, she must instantly pull the entire group counterclockwise (anti-clockwise in British English).

Of course, if the ropes are not properly distributed then a set of cows might not form a proper dance group and thus can not succeed at the Round Dance. One way this happens is when only one rope connects two cows. One cow could pull the other in one direction, but could not pull the other direction (since pushing ropes is well-known to be fruitless). Note that the cows must Dance in lock-step: a dangling cow (perhaps with just one rope) that is eventually pulled along disqualifies a group from properly performing the Round Dance since she is not immediately pulled into lockstep with the rest.

Given the ropes and their distribution to cows, how many groups of cows can properly perform the Round Dance? Note that a set of ropes and cows might wrap many …

输入输出格式

输入格式:

Line 1: Two space-separated integers: N and M

Lines 2..M+1: Each line contains two space-separated integers A and B that describe a rope from cow A to cow B in the clockwise direction.

输出格式:

Line 1: A single line with a single integer that is the number of groups successfully dancing the Round Dance.

输入输出样例

输入样例#1:

5 4
2 4
3 5
1 2
4 1
输出样例#1:

1

说明

Explanation of the sample:

ASCII art for Round Dancing is challenging. Nevertheless, here is a representation of the cows around the stock tank:

       _1___
/**** \
5 /****** 2
/ /**TANK**|
\ \********/
\ \******/ 3
\ 4____/ /
\_______/

Cows 1, 2, and 4 are properly connected and form a complete Round Dance group. Cows 3 and 5 don't have the second rope they'd need to be able to pull both ways, thus they can not properly perform the Round Dance.

思路:

  Tarjan求强连通分量的板子题,只需要在寻找到根节点的地方加一个小判断就可以啦~

坑点:

  1)如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.

        这个让我想了好久,但是感觉没啥卵用。。。

  2)Tarjan求强连通分量是有向图,所以连接的时候一定要有方向的连接QwQ,吃亏了qwq

上代码:

  1)如果只有他自己的话,一定不能够完成,所以++之后再--即可

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int N = ;
const int M = ;
int n,m,answer;
int top,head[N];
int DFN[M],LOW[M];
int index0,tot,stack[M];
bool vis[M]; struct A {
int next,v;
}t[M]; void add(int u,int v)
{///链表
++top;
t[top].v=v;
t[top].next=head[u];
head[u]=top;
} void tarjan(int x)
{///模板
DFN[x]=LOW[x]=++tot;
stack[++index0]=x;
vis[x]=true;
for(int i=head[x];i!=-;i=t[i].next)
{
int v=t[i].v;
if(!DFN[v])
{
tarjan(v);
LOW[x]=min(LOW[x],LOW[v]);
}
else if(vis[v])
LOW[x]=min(LOW[x],DFN[v]);
}
int y;
if(LOW[x]==DFN[x])
{
answer++;
int cnt=;
do
{
cnt++;
y=stack[index0--];
vis[y]=false;
} while(y!=x);
if(cnt==)
answer--;
}
} int main()
{
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
for(int i=,a,b,t;i<=m;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i=;i<=n;++i)
if(!DFN[i])
tarjan(i);
printf("%d\n",answer);
return ;
}

  2)如果是一个组合的就进行--

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int N = ;
const int M = ;
int n,m;
int answer,ans[N],tmp[N],son;
int top,head[N];
int DFN[M],LOW[M];
int index0,tot,stack[M];
bool vis[M]; struct A {
int next,v;
}t[M]; void add(int u,int v)
{///链表
++top;
t[top].v=v;
t[top].next=head[u];
head[u]=top;
} void tarjan(int x)
{///模板
DFN[x]=LOW[x]=++tot;
stack[++index0]=x;
vis[x]=true;
for(int i=head[x];i!=-;i=t[i].next)
{
int v=t[i].v;
if(!DFN[v])
{
tarjan(v);
LOW[x]=min(LOW[x],LOW[v]);
}
else if(vis[v])
LOW[x]=min(LOW[x],DFN[v]);
}
int y;
if(LOW[x]==DFN[x])
{
int cnt=;
do
{
cnt++;
y=stack[index0--];
vis[y]=false;
} while(y!=x);
if(cnt<)
return;
ans[++answer]=x;
if(answer==)
return;
/*清空*/
memset(tmp,,sizeof(tmp));
son=;
for(int j=head[x];j!=-;j=t[j].next)
{
int v=t[j].v;
tmp[++son]=v;///储存与它相连的点
}
for(int i=;i<=answer;++i)
for(int j=;j<=son;j++)
if(ans[i]==tmp[j])///如果是一个组合的
{
answer--;///进行--
return;
}
}
} int main()
{
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
for(int i=,a,b,t;i<=m;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i=;i<=n;++i)
if(!DFN[i])
tarjan(i);
printf("%d\n",answer);
return ;
}

luoguP2863 [USACO06JAN]牛的舞会The Cow Prom的更多相关文章

  1. [luoguP2863] [USACO06JAN]牛的舞会The Cow Prom(Tarjan)

    传送门 有向图,找点数大于1的强连通分量个数 ——代码 #include <stack> #include <cstdio> #include <cstring> ...

  2. bzoj1654 / P2863 [USACO06JAN]牛的舞会The Cow Prom

    P2863 [USACO06JAN]牛的舞会The Cow Prom 求点数$>1$的强连通分量数,裸的Tanjan模板. #include<iostream> #include&l ...

  3. P2863 [USACO06JAN]牛的舞会The Cow Prom

    洛谷——P2863 [USACO06JAN]牛的舞会The Cow Prom 题目描述 The N (2 <= N <= 10,000) cows are so excited: it's ...

  4. [USACO06JAN] 牛的舞会 The Cow Prom

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  5. [USACO06JAN]牛的舞会The Cow Prom Tarjan

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  6. 洛谷——P2863 [USACO06JAN]牛的舞会The Cow Prom

    https://www.luogu.org/problem/show?pid=2863#sub 题目描述 The N (2 <= N <= 10,000) cows are so exci ...

  7. luogu P2863 [USACO06JAN]牛的舞会The Cow Prom |Tarjan

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  8. [USACO06JAN]牛的舞会The Cow Prom

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  9. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom

    传送门 题目大意:形成一个环的牛可以跳舞,几个环连在一起是个小组,求几个小组. 题解:tarjian缩点后,求缩的点包含的原来的点数大于1的个数. 代码: #include<iostream&g ...

随机推荐

  1. python病毒

    介绍 今天碰到一个有趣的python病毒,在这里https://github.com/cranklin/Python-Virus/blob/master/pythonvirus.py#L37 源码 分 ...

  2. Spring MVC(一)Spring MVC的原理

    1.Spring MVC的目的 构建像Spring框架那样灵活和松耦合的Web应用程序. 2.Spring MVC中如何处理Request? 每当用户在Web浏览器中点击链接或者提交表单时,Reque ...

  3. Office/Visio/Project 2019 专业版iso

    一.Microsoft Office 2019专业增强版1.简体中文版Office Professional Plus 2019 (x86 and x64) – DVD (Chinese-Simpli ...

  4. vs2017 不能加载.vdproj

    需要添加Microsoft Visual Studio Installer Projects扩展  下载地址:https://marketplace.visualstudio.com/items?it ...

  5. 26-Perl 包和模块

    1.Perl 包和模块Perl 中每个包有一个单独的符号表,定义语法为:package mypack;此语句定义一个名为 mypack 的包,在此后定义的所有变量和子程序的名字都存贮在该包关联的符号表 ...

  6. java——包装类数据缓存 ==号详解

    Java对部分经常使用的数据采用缓存技术,即第一次使用该数据则创建该数据对象并对其进行缓存, 当再次使用等值对象时直接从缓存中获取,从而提高了程序执行性能.(只对常用数据进行缓存) Java中只是对部 ...

  7. redis的keys常用操作及redis的特性

    redis的keys常用操作 1.获得所有的keys: keys * 2.可以模糊查询 keys:keys  my* 3.删除keys:del mymkey1 mykey2 4.是否存在keys:ex ...

  8. 深入理解hadoop数据倾斜

    深入理解hadoop之数据倾斜 1.什么是数据倾斜 我们在用map /reduce程序执行时,有时候会发现reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理 ...

  9. Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

    转自:https://blog.csdn.net/dataiyangu/article/details/87631574 多线程调试的方法使用Eclipse进行多线程调试线程dump及分析分析死锁案例 ...

  10. 静态static最基础的知识

    static静态: 常见修饰的内容: 1.变量: 修饰变量时,叫静态变量或类变量.此变量为类所有随着虚拟机加载类是而加载入方法区,此静态变量为该类所有对象共享,在内存中只有一个副本,它 当且仅当 类的 ...