【CSP模拟赛】God knows (李超线段树)
题面
CODE
稍微分析一下,发现把(i,pi)(i,p_i)(i,pi)看做二维数点,就是求极长上升子序列的权值最小值。
直接李超线段树
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int INF = 0x3f3f3f3f;
int n, v, mxr, p[MAXN];
int mx[MAXN<<2], vl[MAXN<<2], val[MAXN<<2];
int cal(int i, int l, int r, int R) {
if(l == r) return mx[i] > R ? val[i] : INF;
int mid = (l + r) >> 1;
if(mx[i<<1|1] >= R) return min(vl[i], cal(i<<1|1, mid+1, r, R));
else return cal(i<<1, l, mid, R);
}
void insert(int i, int l, int r, int x, int pos, int V) {
if(l == r) { mx[i] = pos; val[i] = V; return; }
int mid = (l + r) >> 1;
if(x <= mid) insert(i<<1, l, mid, x, pos, V);
else insert(i<<1|1, mid+1, r, x, pos, V);
mx[i] = max(mx[i<<1], mx[i<<1|1]);
vl[i] = cal(i<<1, l, mid, mx[i<<1|1]);
}
void query(int i, int l, int r, int x) {
if(r <= x) { v = min(v, cal(i, l, r, mxr)); mxr = max(mxr, mx[i]); return; }
int mid = (l + r) >> 1;
if(x > mid) query(i<<1|1, mid+1, r, x);
query(i<<1, l, mid, x);
}
int main () {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &p[i]);
memset(vl, 0x3f, sizeof vl);
for(int i = 1, c; i <= n; ++i) {
scanf("%d", &c);
v = INF, mxr = 0, query(1, 1, n, p[i]);
insert(1, 1, n, p[i], i, (v == INF ? 0 : v) + c);
}
v = INF, mxr = 0, query(1, 1, n, n);
printf("%d\n", v);
}
【CSP模拟赛】God knows (李超线段树)的更多相关文章
- 2018-8-10 模拟赛T3(可持久化线段树)
出题人说:正解离线按DFS序排序线段维护区间和 但是对于树上每个点都有一个区间和一个值,两个点之间求1~m的区间和,这不就是用可持久化线段树吗. 只不过这个线段树需要区间修改,不过不需要标记下传,询问 ...
- 7.18 NOI模拟赛 因懒无名 线段树分治 线段树维护直径
LINK:因懒无名 20分显然有\(n\cdot q\)的暴力. 还有20分 每次只询问一种颜色的直径不过带修改. 容易想到利用线段树维护直径就可以解决了. 当然也可以进行线段树分治 每种颜色存一下直 ...
- 5.29 省选模拟赛 波波老师 SAM 线段树 单调队列 并查集
LINK:波波老师 LINK:同bzoj 1396 识别子串 不过前者要求线性做法 后者可以log过.实际上前者也被我一个log给水过了. 其实不算很水 我自认跑的很快罢了. 都是求经过一个位置的最短 ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交
4515: [Sdoi2016]游戏 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 129[Submit][Status][ ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
- 【BZOJ-1568】Blue Mary开公司 李超线段树 (标记永久化)
1568: [JSOI2008]Blue Mary开公司 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 557 Solved: 192[Submit ...
- Codeforces Round #463 F. Escape Through Leaf (李超线段树合并)
听说正解是啥 set启发式合并+维护凸包+二分 根本不会啊 , 只会 李超线段树合并 啦 ... 题意 给你一颗有 \(n\) 个点的树 , 每个节点有两个权值 \(a_i, b_i\) . 从 \( ...
- 【BZOJ3165】[HEOI2013]Segment(李超线段树)
[BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...
随机推荐
- jar 常用操作
查看 jar 包中的文件列表,并进行重定向 jar -tvf a.jar > a.txt 更新文件到 jar 中,目录需对应 jar -uf a.jar com/a.class a.class ...
- 树莓派上跑.NET的segment fault错误
答案:树莓派1和树莓派zero是不支持的,原因是.net需要arm v7 详情看这里 可以用 cat /proc/cpuinfo | grep 'model name' |uniq 看一下cpu
- ABP中的AutoMapper
在我们的业务中经常需要使用到类型之间的映射,特别是在和前端页面进行交互的时候,我们需要定义各种类型的Dto,并且需要需要这些Dto和数据库中的实体进行映射,对于有些大对象而言,需要赋值太多的属性,这样 ...
- STM32之外部中断
图1.0 图1.1 中断控制器支持23条中断线,其中16条是IO管脚中断线,分别是EXTI0~EXTI15: 图 1.2 另外七根中断线如下图: 中断线和管脚的对应关系:EXTI0~EXTI15 和 ...
- C++进行字母大小写转换
#include <iostream> #include <Windows.h> #include <string> using namespace std; in ...
- golang之方法
golang中的方法是作用在指定的数据类型上的(即:和指定 数据类型绑定),因此自定义类型,都可以有方法,而不仅仅是在struct. 方法的使用: type Person struct { Num i ...
- Python3遍历指定文件夹下所有文件及文件夹
采用os模块儿: import os def get_filelist(dir): for home, dirs, files in os.walk(dir): print("####### ...
- Scratch编程与高中数学算法初步
scratch编程与高中数学算法初步 一提到编程,大家可能觉得晦涩难懂,没有一定的英语和数学思维基础的人,一大串的编程代码让人望而步,何况是中小学生. Scratch是一款由麻省理工学院(MIT) ...
- springboot处理事务
ssh ssm都有事务管理service层通过applicationContext.xml配置,所有service方法都加上事务操作: 用来保证一致性,即service方法里的多个dao操作,要么同时 ...
- Effective Java 读书笔记(四):泛型
1 不要使用原始类型 (1)术语 术语 例子 参数化类型(Parameterized type) List<String> 实际类型参数(Actual type parameter) St ...