【CSP模拟赛】God knows (李超线段树)
题面

CODE
稍微分析一下,发现把(i,pi)(i,p_i)(i,pi)看做二维数点,就是求极长上升子序列的权值最小值。
直接李超线段树
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int INF = 0x3f3f3f3f;
int n, v, mxr, p[MAXN];
int mx[MAXN<<2], vl[MAXN<<2], val[MAXN<<2];
int cal(int i, int l, int r, int R) {
if(l == r) return mx[i] > R ? val[i] : INF;
int mid = (l + r) >> 1;
if(mx[i<<1|1] >= R) return min(vl[i], cal(i<<1|1, mid+1, r, R));
else return cal(i<<1, l, mid, R);
}
void insert(int i, int l, int r, int x, int pos, int V) {
if(l == r) { mx[i] = pos; val[i] = V; return; }
int mid = (l + r) >> 1;
if(x <= mid) insert(i<<1, l, mid, x, pos, V);
else insert(i<<1|1, mid+1, r, x, pos, V);
mx[i] = max(mx[i<<1], mx[i<<1|1]);
vl[i] = cal(i<<1, l, mid, mx[i<<1|1]);
}
void query(int i, int l, int r, int x) {
if(r <= x) { v = min(v, cal(i, l, r, mxr)); mxr = max(mxr, mx[i]); return; }
int mid = (l + r) >> 1;
if(x > mid) query(i<<1|1, mid+1, r, x);
query(i<<1, l, mid, x);
}
int main () {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &p[i]);
memset(vl, 0x3f, sizeof vl);
for(int i = 1, c; i <= n; ++i) {
scanf("%d", &c);
v = INF, mxr = 0, query(1, 1, n, p[i]);
insert(1, 1, n, p[i], i, (v == INF ? 0 : v) + c);
}
v = INF, mxr = 0, query(1, 1, n, n);
printf("%d\n", v);
}
【CSP模拟赛】God knows (李超线段树)的更多相关文章
- 2018-8-10 模拟赛T3(可持久化线段树)
出题人说:正解离线按DFS序排序线段维护区间和 但是对于树上每个点都有一个区间和一个值,两个点之间求1~m的区间和,这不就是用可持久化线段树吗. 只不过这个线段树需要区间修改,不过不需要标记下传,询问 ...
- 7.18 NOI模拟赛 因懒无名 线段树分治 线段树维护直径
LINK:因懒无名 20分显然有\(n\cdot q\)的暴力. 还有20分 每次只询问一种颜色的直径不过带修改. 容易想到利用线段树维护直径就可以解决了. 当然也可以进行线段树分治 每种颜色存一下直 ...
- 5.29 省选模拟赛 波波老师 SAM 线段树 单调队列 并查集
LINK:波波老师 LINK:同bzoj 1396 识别子串 不过前者要求线性做法 后者可以log过.实际上前者也被我一个log给水过了. 其实不算很水 我自认跑的很快罢了. 都是求经过一个位置的最短 ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交
4515: [Sdoi2016]游戏 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 129[Submit][Status][ ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
- 【BZOJ-1568】Blue Mary开公司 李超线段树 (标记永久化)
1568: [JSOI2008]Blue Mary开公司 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 557 Solved: 192[Submit ...
- Codeforces Round #463 F. Escape Through Leaf (李超线段树合并)
听说正解是啥 set启发式合并+维护凸包+二分 根本不会啊 , 只会 李超线段树合并 啦 ... 题意 给你一颗有 \(n\) 个点的树 , 每个节点有两个权值 \(a_i, b_i\) . 从 \( ...
- 【BZOJ3165】[HEOI2013]Segment(李超线段树)
[BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...
随机推荐
- Request部分知识点小结
HTTP: * 概念:Hyper Text Transfer Protocol 超文本传输协议 * 传输协议:定义了,客户端和服务器端通信时,发送数据的格式 * 特点: 1. 基于TCP/IP的高级协 ...
- Thread interrupted() 线程的中断
问题: 1.线程的中断方式. 2.为什么中断阻塞中的线程,会抛出异常. 代码示例: package com.hdwl.netty; public class ThreadInterrupted { p ...
- 对称加密,非对称加密,数字签名,https
对称加密和非对称加密 对称加密 概念:加密秘钥和解密秘钥使用相同的秘钥(即加密和解密都必须使用同一个秘钥) 特点:一对一的双向保密通信(每一方既可用该秘钥加密,也可用该秘钥解密,非对称加密是多对一的单 ...
- 转:common.js 常用js公共函数库
转自其他博主,自己开发备用 var h = {}; h.get = function (url, data, ok, error) { $.ajax({ url: url, data: data, d ...
- Dijkstra算法正确性证明
问题:求图中点1到其他各点的最短距离 策略: 1.把起点1放入初始集合Set中,从剩余的点中,选取到Set(此时Set中只有1个点)距离最近的点,并入集合Set中, 2.从剩余的点中,找经过集合Set ...
- PDA无线移动开单智能新生活,省时、省心、省力
纯手工4个小时 VS移动PDA开单10分钟 无论你是营业办公还是需要上门接货,开单都是一件重要且繁琐的事情.我们了解到传统物流业务运营都是通过手抄单.表格.补录运单来重复操作每一笔业务,手动填写纸质单 ...
- 数据结构之队列(queue)
队列介绍 1.队列是一个有序列表,可以用数组或是链表来实现. 2.遵循先入先出的原则.即:先存入队列的数据,要先取出.后存入的要后取出. 应用场景 比如某某银行叫号系统: 数组模拟队列 队列本身是有序 ...
- Django Rest framework的限流实现流程
目录 一 什么是throttle 二 Django REST framework是如何实现throttle的 三 Django REST framework中throttle源码流程 一 什么是thr ...
- Machine Learning Technologies(10月20日)
Linear regression SVM(support vector machines) Advantages: ·Effective in high dimensional spaces. ·S ...
- OpenStack kilo版(5) Neutron部署
neutron简介: Neutron 通过 plugin 和 agent 提供的网络服务. plugin 位于 Neutron server,包括 core plugin 和 service plug ...