首先研究环上性质,发现如果状态不变的边就不需要动了,每次改的环上边肯定都是起末状态不同的边且仅改一次,因为如果有一条边在多个环上,相当于没有改,无视这条边之后,这几个环显然可以并成一个大环。所以,我们只关注起末状态不同的边。

然后,这些边形成一张图。对于每个连通块,如果有解的话,应当是一堆边不相交的简单环通过点互相连接的。这样一张图等价于一个欧拉回路,所以只要判每个连通块是不是欧拉回路(偶数度)即可。

然后是求解,目标就是把每个连通块所有的简单环都拎出来。回顾上述欧拉回路判断,实际上正是因为若干简单环构成的图可以一笔画。。所以仿照一笔画过程(也就是栈中记录的访问点顺序),再开一个栈,不断压栈,当遇到一个先前已经压到栈的点的时候说明形成了一个简单环,一直弹栈直到先前点为止,这时弹出元素就构成了一个环。。这样所有环就出来了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define mst(x) memset(x,0,sizeof x)
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+,M=1e6+;
struct thxorz{
int head[N],to[M<<],nxt[M<<],tot;
thxorz(){tot=;}
inline void add(int x,int y){
to[++tot]=y,nxt[tot]=head[x],head[x]=tot;
to[++tot]=x,nxt[tot]=head[y],head[y]=tot;
}
}G;
int deg[N],stk[M],vis[M<<],bin[M],bcnt,top,st[N],tp,instk[N];
int n,m,cnt;
#define y G.to[j]
void dfs(int x){//dbg(x);
for(register int&j=G.head[x];j;j=G.nxt[j])if(!vis[j])vis[j]=vis[j^]=,bin[++bcnt]=j,dfs(y);
stk[++top]=x;
}
#undef y
vector<int> ans[M];
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n),read(m);
for(register int i=,x,y,z,w;i<=m;++i){
read(x),read(y),read(z),read(w);
if(z^w)G.add(x,y),++deg[x],++deg[y];
}
for(register int i=;i<=n;++i)if(deg[i]&){puts("NIE");return ;}
for(register int i=;i<=n;++i)if(G.head[i]){
dfs(i);tp=;//dbg(i);
while(bcnt)vis[bin[bcnt]]=vis[bin[bcnt]^]=,--bcnt;
while(top){
int x=stk[top--];//dbg(x);
if(!instk[x])instk[x]=,st[++tp]=x;
else{
ans[++cnt].push_back(x);
do instk[st[tp]]=,ans[cnt].push_back(st[tp--]);while(st[tp]^x);
ans[cnt].push_back(x);
}
}
}
printf("%d\n",cnt);
for(register int i=;i<=cnt;++i,puts("")){
printf("%d ",ans[i].size()-);
for(register int j=;j<ans[i].size();++j)printf("%d ",ans[i][j]);
}
return ;
}

总结:这题启示我们在有关简单环的问题中,除了点双、边双等等转化策略以外,在涉及环的方面也可以采用欧拉路来考虑。总之,解决环相关的问题大概就是点双、边双、欧拉路以及栈的思想、dfs以及二分图染色等方法。

BZOJ2278 [Poi2011]Garbage[欧拉回路求环]的更多相关文章

  1. [POI2011]Garbage 欧拉回路

    [POI2011]Garbage 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2278 https://loj.ac/problem/216 ...

  2. BZOJ2278 : [Poi2011]Garbage

    如果两个环相交,那么相交的部分相当于没走. 因此一定存在一种方案,使得里面的环都不相交. 把不需要改变状态的边都去掉,剩下的图若存在奇点则无解. 否则,每找到一个环就将环上的边都删掉,时间复杂度$O( ...

  3. Codeforces Round #346 (Div. 2) E - New Reform 无相图求环

    题目链接: 题目 E. New Reform time limit per test 1 second memory limit per test 256 megabytes inputstandar ...

  4. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  5. codevs4511信息传递(Tarjan求环)

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  6. poj 2240 Bellman-Flod 求环

    http://poj.org/problem?id=2240 深刻体现了自己代码能力有问题外加改模板能力有问题.外加Debug有问题.以后做到: 1.算法原理能够轻易弄出来. 2.代码模板自己收集各种 ...

  7. AC日记——传话 codevs 1506 (tarjan求环)

    1506 传话  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题解       题目描述 Description 一个朋友网络,如果a认识b,那么如果a第 ...

  8. HDU - 6041:I Curse Myself(Tarjan求环&K路归并)

    There is a connected undirected graph with weights on its edges. It is guaranteed that each edge app ...

  9. 洛谷P2444 [POI2000]病毒(AC自动机,DFS求环)

    洛谷题目传送门 AC自动机入门--yyb巨佬的博客 AC自动机入手经典好题(虽然年代久远) 有了fail指针,trie树就不是原来的树型结构了,我们可以把它叫做trie图,由父节点向子节点连的边和fa ...

随机推荐

  1. Django模板及表查询笔记

    模板层 后端朝html页面传递数据 两种给html页面传递数据的方式 第一种: render(request,'index.html',{'user_list':user_list}) 第二种 ren ...

  2. linux之dup和dup2函数解析

    1. 文件描述符在内核中数据结构在具体说dup/dup2之前,我认为有必要先了解一下文件描述符在内核中的形态.一个进程在此存在期间,会有一些文件被打开,从而会返回一些文件描述符,从shell中运行一个 ...

  3. go 二进制数据处理

    以下是利用标准库binary来进行编解码 编码 ①使用bytes.Buffer来存储编码生成的串②使用binary.Write来编码存储在①的buf中 package main import ( &q ...

  4. JAVA日常之四

    构造函数 又称“构建器”,函数名称与类名称完全相同,无返回值. 每个类都有构造函数. 可以自定义构造函数,并且可以创建多个重载/过载的构造函数. 若没有手动创建该函数,总会存在一个默认的构造函数(无参 ...

  5. Education Reform(CodeForces-119C)【DP】

    题意:从m门课选出n个排到n天,每天一门,难度须递增,每门课对应着一个作业量Xi,且Xi = Xi-1 + k or Xi - Xi-1 * k,总作业量要尽可能大,问能否排布,若能排布,求方案. 思 ...

  6. MyBatis 源码篇-日志模块2

    上一章的案例,配置日志级别为 debug,执行一个简单的查询操作,会将 JDBC 操作打印出来.本章通过 MyBatis 日志部分源码分析它是如何实现日志打印的. 在 MyBatis 的日志模块中有一 ...

  7. hdu 1269 入手强连通

    思路待整理 #include<cstdio> #include<iostream> #include<cstring> #include<vector> ...

  8. vue 安装插件

    import VueClipboard from 'vue-clipboard2' import MessagePlugin from '../message' import * as filters ...

  9. Django rest-framework框架-CSRF验证

    settings.py里面有一个中间件 django.middleware.csrf.CsrfViewmiddleware  #如果注释掉全站不需要csrf验证  如果打开全站都要csrf验证 全局使 ...

  10. redis 交集、并集、差集

    sinter .sunion .sdiff redis 支持 Set集合的数据存储,其中有三个比较特殊的方法: sinter key [key …] 返回一个集合的全部成员,该集合是所有给定集合的交集 ...