【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)
title: 【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)
categories:
- Mathematic
- Linear Algebra
keywords: - Diagonalization
- Pseudoinverse
toc: true
date: 2017-12-06 14:03:08

Abstract: 本文以线性变换的角度重新理解矩阵变换的原理,以对角化和SVD作为主要的案例
Keywords: Diagonalization,Pseudoinverse
开篇废话
傻子不是生出来的,是教出来的,如果一个人从小没人教他如何看问题如何思考,或者他自己也不愿意去思考,别人说什么他都相信,那么这个人将会变成一个温和的劳动者,这个道理我们老一辈革命家们都明白,枪杆子笔杆子就可万世而为君,看个头条都能热血沸腾的人统治成本极低。
Diagonalization and the Pseudoinverse
首先我们要回顾下,并且强调下昨天讲的内容,就是线性变换对应的矩阵,对于不同空间相互变换,知道空间是不能确定矩阵的,还要确定基和相互关系,光知道基也没用,比如求导和求积分的例子告诉我们,必须要知道他们之间的计算关系,或者叫做原始空的基向量线性变换到目标空间后的向量是啥才能确定矩阵A(上一篇的
【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)的更多相关文章
- 学习笔记DL007:Moore-Penrose伪逆,迹运算,行列式,主成分分析PCA
Moore-Penrose伪逆(pseudoinverse). 非方矩阵,逆矩阵没有定义.矩阵A的左逆B求解线性方程Ax=y.两边左乘左逆B,x=By.可能无法设计唯一映射将A映射到B.矩阵A行数大于 ...
- matlab:inv,pinv逆与伪逆
对于方阵A,如果为非奇异方阵,则存在逆矩阵inv(A)对于奇异矩阵或者非方阵,并不存在逆矩阵,但可以使用pinv(A)求其伪逆 inv: inv(A)*B实际上可以写成A\BB*inv(A)实 ...
- 【线性代数】6-2:对角化(Diagonalizing a Matrix)
title: [线性代数]6-2:对角化(Diagonalizing a Matrix) categories: Mathematic Linear Algebra keywords: Eigenva ...
- Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)
手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...
- MIT线性代数:22.对角化和A的幂
- 【线性代数】Linear Algebra Big Picture
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...
- Other-Website-Contents.md
title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 999 ...
- 灰度图像--图像分割 阈值处理之OTSU阈值
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...
- 《Deep Learning》第二章 线性代数 笔记
第二章 线性代数 2.1 名词 标量(scalar).向量(vector).矩阵(matrix).张量(tensor) 2.2 矩阵和向量相乘 1. 正常矩阵乘法: 2. 向量点积: 3. Hadam ...
随机推荐
- Qt中容器类应该如何存储对象(最好使用对象指针类型,如:QList<TestObj*>,而不要使用 QList<TestObj> 这样的定义,建议采用 智能指针QSharedPointer)
Qt提供了丰富的容器类型,如:QList.QVector.QMap等等.详细的使用方法可以参考官方文档,网上也有很多示例文章,不过大部分文章的举例都是使用基础类型:如int.QString等.如果我们 ...
- (八)装配Bean(2)
二.在Java类中进行显式的装配 显式配置有两种: 1. 一种是在java(本文讲解) 2. 另一种是xml配置文件(第一章有讲) 案例一: 使用java显式装配+@autowired自动装配的方 ...
- JS OOP -03 JS类的实现
JS类的实现: a.理解类的实现机制 b.使用prototype对象定义类成员 c.一种JS类的设计模式 a.理解类的实现机制 在JS中可以使用function关键字来定义一个类. 添加类的成员,在函 ...
- MongoDB知识小结
一.术语 RDBMS MongoDB 数据库 数据库 表格 集合 行 文档 列 字段 表联合 嵌套文档 主键 主键 (MongoDB 提供了 key 为 _id ) 数据库 数据库名可以是满足以下条件 ...
- Navicat远程连接centos上mysql出错
原因1:mysql账户是不允许远程连接 参考:centos安装mysql(for 小白) 打开远程连接 原因2:3306端口未开启 开启端口:iptables -I INPUT -p tcp --dp ...
- linux内核信号量
用户态的信号量: System V 信号量 Posix 信号量 信号量是用于保护临界区的一种常用方法.它的使用和自旋锁类似.相同的是,只有得到信号量的进程才能执行临界区代码:不同的是,当获取不到信号量 ...
- string+DP leetcode-4.最长回文子串
5. Longest Palindromic Substring 题面 Given a string s, find the longest palindromic substring in s. Y ...
- PHP 根据二维数组中的某个字段进行排序
<?php $data = array( array( 'id' => 5698, 'first_name' => 'Bill', 'last_name' => 'Gates' ...
- 超详细的Java面试题总结之JavaWeb基础知识总结
ervlet总结: 在Java Web程序中,Servlet主要负责接收用户请求HttpServletRequest,在doGet(),doPost()中做相应的处理,并将回应HttpServletR ...
- 【shell】shell基础
一.数据类型 1.shell变量 运行shell时,会同时存在三种变量: 1) 局部变量 局部变量在脚本或命令中定义,仅在当前shell实例中有效,其他shell启动的程序不能访问局部变量. 2) 环 ...