\(0.\) RMQ问题

P1816

人话翻译

给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值。

其中\(m,n\leq10^5\)

\(1.\) 暴力做法

很显然,暴力做法就是便历 \(\max\limits_{l\leq i\leq r}a_i\) 。这个做法最坏时间复杂度将会高达\(O(n^2)\)。很显然,这对于\(1e5\)的数据范围要炸

\(2.\) 正解

线段树

如果不知道什么是线段树,请点击这里 线段树

对于这种区间信息,线段树显然是能够维护的。但鉴于本题没有区间修改,线段树显然有点大材小用,并且数组模拟的线段树空间将会达到\(O(4n)\)

线段树还有一些缺点,就是它的查询时间复杂度最坏是\(O(logn)\)的,因为没有区间修改,这个时间开销也略微有点大。

\(ST\)表(倍增)

倍增算法的含义就是成倍增长。我们考虑一个这样的数据结构:

一个二维数组\(st\),其中

\[st_{i,j}=\min\limits_{i\leq k\leq i+2^j}a_k
\]

我们假设一个数据:\(9\ 3\ 1\ 7\ 5\ 6\ 0\ 8\)

可以建立如下所示的\(ST\)表:

建表

我们发现,我们可以一层层地建表。这样,我们就可以通过递推,利用上层的信息,建表。

我们先将读入数据存在\(0\)这一行。

我们发现,要想实现建立这个表,我们需要每次倍增长度。而最简单的倍增长度方法就是将两段不相交的区间合并起来。

所以我们可以得到如下公式:

\[st_{i,j}=min(st_{i,j-1},st_{i+2^{j-1},j-1}
\]

这样,我们就能完成建表

for(rg int i=1;i<=16;i++){ // 由计算器可得 log1e5 约为 17,但是这里循环16次已经够了。
for(rg int j=1;j+(1<<i)-1<=n;j++){
st[i][j]=min(st[i-1][j],st[i-1][j+(1<<(i-1))]);
}
}
  • 注:为了方便,我们常常把这个表“竖”过来。本篇中的代码一律如此

我们可以发现,建表的时间复杂度是\(O(nlogn)\)的

查询

我们由上表知道,想要查询\([l,r]\)的最值,只需求出

\[min(st_{l,log(len)},st_{r-2^{log(len)+1},log(len)})
\]

其中

\[len=r-l+1
\]

比如上方的数据,我们想要查询\([3,8]\)

我们只需要从\(3\)往后\(4\)个,\(8\) 往前\(4\)个,肯定能够完全覆盖这个区间

所以我们的查询开销是\(O(1)\)的

ans=min(st[(int)log2(len)][l],st[(int)log2(len)][r-(1<<((int)log2(len)))+1]);

至此,我们已经完成了全部内容

【算法学习笔记】RMQ问题与ST表的更多相关文章

  1. 某科学的PID算法学习笔记

    最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...

  2. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

  3. Manacher算法学习笔记 | LeetCode#5

    Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...

  4. Johnson算法学习笔记

    \(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...

  5. Johnson 全源最短路径算法学习笔记

    Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...

  6. 【模板】RMQ问题的ST表实现

    $RMQ$问题:给定一个长度为$N$的区间,$M$个询问,每次询问$[L_i,R_i]$这段区间元素的最大值/最小值. $RMQ$的高级写法一般有两种,即为线段树和$ST$表. 本文主要讲解一下$ST ...

  7. RMQ问题及ST表

    RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大.最小值的问题.很显然,如果暴力预处理的话复杂度为 \(O(n^2)\),而此类问 ...

  8. 算法学习笔记:最近公共祖先(LCA问题)

    当我们处理树上点与点关系的问题时(例如,最简单的,树上两点的距离),常常需要获知树上两点的最近公共祖先(Lowest Common Ancestor,LCA).如下图所示: 2号点是7号点和9号点的最 ...

  9. 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

    题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...

随机推荐

  1. element UI实现动态生成多级表头

    一.效果图 二.封装两个组件,分别为DynamicTable.vue和TableColumn.vue,TableColumn.vue主要是使用递归来对表头进行循环生成 DynamicTable.vue ...

  2. 微信扫码无法直接下载APP的apk的解决办法

    PHP的处理方式:http://blog.sina.com.cn/s/blog_4cd978f90102wx92.html

  3. OS X更新Catalina 10.15.2后虚拟机黑屏(已解决)

    简述 问题:更新OS X 10.15.2后VM Ware进unbuntu 16.0黑屏,但是VM Ware 有显示,情况类似如下: 解决办法   重启系统,command+r 进入恢复模式,打开bas ...

  4. 【转帖】Windows与Linux系统下的库介绍

    Windows与Linux系统下的库介绍 http://embeddedlinux.org.cn/emb-linux/entry-level/200903/12-553.html 库的定义 库文件是一 ...

  5. Oracle的基本操作-修改表结构、数据的增删改查

    创建一个person表 create table person( pid ), pname ) ); 添加一列 ); 修改列类型 ); 修改列名称 alter table person rename ...

  6. django channels

    django channels django channels 是django支持websocket的一个模块. 1. 安装 `pip3 install channels` 2. 快速上手 2.1 在 ...

  7. MySQ-表关系-外键-修改表结构-复制表-03

    目录 前言 不合理的表结构(案例) 带来的问题 如何解决问题? 如何确定表关系? 表关系 一对多 多对多 一对一 应用场景 判断表关系最简单的语法 三种关系常见案例 如何建立表关系? 外键 forei ...

  8. 并不对劲的CF1237D&E:Balanced Playlist and Binary Search Trees

    CF1237D Balanced Playlist 题意 有一个长度为\(n\)(\(n\leq 10^5\))的循环播放歌单,每首歌有一个优秀值\(a_i\)(\(a_i\leq 10^9\)). ...

  9. tensorflow零起点快速入门(2)

    指定设备与矩阵乘法 使用tf.device("/gpu:0")用于指定设备进行运算. 在使用jupyter notebook的时候,可能会出现使用异常,需要使用config=tf. ...

  10. Spring实战(六)自动装配的歧义性

    1.Spring进行自动装配时碰到的bean歧义性问题. 在进行自动装配时,只有仅有一个bean匹配所需结果时,才是可行的. 如果不仅仅一个bean能够匹配结果,例如一个接口有多个实现,这种歧义性会阻 ...