292D - Connected Components

D. Connected Components

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.

Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:

  1. Temporarily disconnect the cables with indexes from l**i to r**i, inclusive (the other cables remain connected).
  2. Count the number of connected components in the graph that is defining the computer network at that moment.
  3. Re-connect the disconnected cables with indexes from l**i to r**i (that is, restore the initial network).

Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.

Input

The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.

The following m lines contain the cables' description. The i-th line contains space-separated pair of integers x**i, y**i (1 ≤ x**i, y**i ≤ n; x**i ≠ y**i) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.

The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers l**i, r**i (1 ≤ l**i ≤ r**i ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.

Output

Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.

Examples

input

Copy

6 51 25 42 33 13 661 32 51 55 52 43 3

output

Copy

456342

题意:

给你一个含有n个点,m个边的无向图。

以及q个询问

每一个询问,给定一个l和r,代表在原本的图中,删除e[l]~e[r] 这些边,

求剩下的图中联通快的个数。

思路:

我们建立2*m个并查集,

前m个是从1到m个边依次加入时的图网络联通情况,用并查集数组a表示

后m个维护反过来,即第m个到第1个边以此加入时的图网络联通情况。用并查集数组b来表示

对于每一个询问:

我们将a[l-1]和b[r+1]两个并查集合并,即可求得图中联通快的个数。

时间复杂度为\(O(n*m)\)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 10010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
struct dsu
{
int fa[505];
void init()
{
repd(i, 1, n)
{
fa[i] = i;
}
}
int findpar(int x)
{
if (fa[x] == x)
{
return x;
} else {
return fa[x] = findpar(fa[x]);
}
}
void mg(int a, int b)
{
a = findpar(a);
b = findpar(b);
if (a != b)
{
fa[a] = b;
}
}
int getans()
{
int res = 0;
repd(i, 1, n)
{
if (fa[i] == i)
{
res++;
}
}
return res;
}
} a[maxn], b[maxn];
dsu t1, t2;
pii c[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout); while (~du2(n, m))
{
a[0].init();
b[m + 1].init();
t1.init();
repd(i, 1, m)
{
du2(c[i].fi, c[i].se);
t1.mg(c[i].fi, c[i].se);
a[i] = t1;
}
t1.init();
for (int i = m; i >= 1; --i)
{
t1.mg(c[i].fi, c[i].se);
b[i] = t1;
}
int q;
scanf("%d", &q);
int l, r;
while (q--)
{
du2(l, r);
t2 = a[l - 1];
repd(i, 1, n)
{
// chu(t2.findpar(i));
// chu(b[r + 1].findpar(i));
t2.mg(t2.findpar(i), b[r + 1].findpar(i));
}
printf("%d\n", t2.getans() );
} } return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)的更多相关文章

  1. Croc Champ 2013 - Round 1 E. Copying Data 分块

    E. Copying Data time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  2. Croc Champ 2013 - Round 1 E. Copying Data 线段树

    题目链接: http://codeforces.com/problemset/problem/292/E E. Copying Data time limit per test2 secondsmem ...

  3. Croc Champ 2013 - Round 2 C. Cube Problem

    问满足a^3 + b^3 + c^3 + n = (a+b+c)^3 的 (a,b,c)的个数 可化简为 n = 3*(a + b) (a + c) (b + c) 于是 n / 3 = (a + b ...

  4. Educational Codeforces Round 37 E. Connected Components?(图论)

    E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论

    E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  8. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  9. [Redux] Using withRouter() to Inject the Params into Connected Components

    We will learn how to use withRouter() to inject params provided by React Router into connected compo ...

随机推荐

  1. 19 个让 MySQL 效率提高 3 倍的 SQL 优化技巧

    优化成本: 硬件>系统配置>数据库表结构>SQL及索引 优化效果: 硬件<系统配置<数据库表结构<SQL及索引 本文我们就来谈谈 MySQL 中常用的 SQL 优化 ...

  2. PHPNamespace命名空间

    命名空间一个最明确的目的就是解决重名问题,PHP中不允许两个函数或者类出现相同的名字,否则会产生一个致命的错误.这种情况下只要避免命名重复就可以解决,最常见的一种做法是约定一个前缀. 例:项目中有两个 ...

  3. Unit Testing, Integration Testing and Functional Testing

    转载自:https://codeutopia.net/blog/2015/04/11/what-are-unit-testing-integration-testing-and-functional- ...

  4. VS编译错误._CRT_SECURE_NO_WARNINGS、_WINSOCK_DEPRECATED_NO_WARNINGS

    1.不记得原来的情况了,记得大概是这样: 低版本的 VC编译器 使用 strcpy.sprintf 等它不会报错,但是 高版本的 VS编译就会报错,大意是 strcpy.sprintf 等函数 不安全 ...

  5. kafka producer 生产者客户端参数配置

    在生产者向broker发送消息时,需要配置不同的参数来确保发送成功. acks = all #指定分区中有多少副本必须收到这条消息,生产者才认为这条消息发送成功 acks = 0 #生产者发送消息之后 ...

  6. HanLP-地名识别调试方法

    HanLP收词特别是实体比较多,因此特别容易造成误识别.下边举几个地名误识别的例子,需要指出的是,后边的机构名识别也以地名识别为基础,因此,如果地名识别不准确,也会导致机构名识别不准确. 类型1 数字 ...

  7. MySQL主从同步报错1507

    mysql 从库上手动删除partiton后,主库未做修改.后期主库上删除partiton后,出现问题. 故障现场 Last_Errno: 1507 Last_Error: Error 'Error ...

  8. spring-redis使用

    导包 注入调用           opsForValue()     opsForList() redisTemplate   配置 ,为了   对key采用string序列化方式          ...

  9. 有关带scala版本的eclipse4.7的下载

    有关带scala版本的eclipse4.7的下载, 你可以直接去: http://scala-ide.org/download/sdk.html ​ 下载下来后是:scala-SDK-4.7.0-vf ...

  10. 剑指offer18:操作给定的二叉树,将其变换为源二叉树的镜像。

    1 题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 2 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ ...