292D - Connected Components

D. Connected Components

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.

Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:

  1. Temporarily disconnect the cables with indexes from l**i to r**i, inclusive (the other cables remain connected).
  2. Count the number of connected components in the graph that is defining the computer network at that moment.
  3. Re-connect the disconnected cables with indexes from l**i to r**i (that is, restore the initial network).

Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.

Input

The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.

The following m lines contain the cables' description. The i-th line contains space-separated pair of integers x**i, y**i (1 ≤ x**i, y**i ≤ n; x**i ≠ y**i) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.

The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers l**i, r**i (1 ≤ l**i ≤ r**i ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.

Output

Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.

Examples

input

Copy

6 51 25 42 33 13 661 32 51 55 52 43 3

output

Copy

456342

题意:

给你一个含有n个点,m个边的无向图。

以及q个询问

每一个询问,给定一个l和r,代表在原本的图中,删除e[l]~e[r] 这些边,

求剩下的图中联通快的个数。

思路:

我们建立2*m个并查集,

前m个是从1到m个边依次加入时的图网络联通情况,用并查集数组a表示

后m个维护反过来,即第m个到第1个边以此加入时的图网络联通情况。用并查集数组b来表示

对于每一个询问:

我们将a[l-1]和b[r+1]两个并查集合并,即可求得图中联通快的个数。

时间复杂度为\(O(n*m)\)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 10010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
struct dsu
{
int fa[505];
void init()
{
repd(i, 1, n)
{
fa[i] = i;
}
}
int findpar(int x)
{
if (fa[x] == x)
{
return x;
} else {
return fa[x] = findpar(fa[x]);
}
}
void mg(int a, int b)
{
a = findpar(a);
b = findpar(b);
if (a != b)
{
fa[a] = b;
}
}
int getans()
{
int res = 0;
repd(i, 1, n)
{
if (fa[i] == i)
{
res++;
}
}
return res;
}
} a[maxn], b[maxn];
dsu t1, t2;
pii c[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout); while (~du2(n, m))
{
a[0].init();
b[m + 1].init();
t1.init();
repd(i, 1, m)
{
du2(c[i].fi, c[i].se);
t1.mg(c[i].fi, c[i].se);
a[i] = t1;
}
t1.init();
for (int i = m; i >= 1; --i)
{
t1.mg(c[i].fi, c[i].se);
b[i] = t1;
}
int q;
scanf("%d", &q);
int l, r;
while (q--)
{
du2(l, r);
t2 = a[l - 1];
repd(i, 1, n)
{
// chu(t2.findpar(i));
// chu(b[r + 1].findpar(i));
t2.mg(t2.findpar(i), b[r + 1].findpar(i));
}
printf("%d\n", t2.getans() );
} } return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)的更多相关文章

  1. Croc Champ 2013 - Round 1 E. Copying Data 分块

    E. Copying Data time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  2. Croc Champ 2013 - Round 1 E. Copying Data 线段树

    题目链接: http://codeforces.com/problemset/problem/292/E E. Copying Data time limit per test2 secondsmem ...

  3. Croc Champ 2013 - Round 2 C. Cube Problem

    问满足a^3 + b^3 + c^3 + n = (a+b+c)^3 的 (a,b,c)的个数 可化简为 n = 3*(a + b) (a + c) (b + c) 于是 n / 3 = (a + b ...

  4. Educational Codeforces Round 37 E. Connected Components?(图论)

    E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论

    E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  8. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  9. [Redux] Using withRouter() to Inject the Params into Connected Components

    We will learn how to use withRouter() to inject params provided by React Router into connected compo ...

随机推荐

  1. linux查看端口进程占用情况

    本文介绍linux如何查看端口被哪个进程占用的方法: 1.lsof -i:端口号 2.netstat -tunlp|grep 端口号 都可以查看指定端口被哪个进程占用的情况 [步骤一]lsof -i ...

  2. vue组件库element-ui 的Table内容显示不更新

    一.问题原因: 因为数组直接赋值不能被 Object.defineProperty 检测到.  二.解决方法 所以应该要使用this.$set(‘对象名’,要修改的属性名,属性值),这样新添加的属性值 ...

  3. 自学电脑游戏第三天(Swing组件)

    Swing组件 1.按钮(Jbutton) 示例:选择用户所喜欢的城市. import java.awt.*; import java.awt.event.*; import javax.swing. ...

  4. 为服务部署 Jekins的使用

    docker pull jenkinsci/jenkins docker run -d -p 8080:8080 -v E:/docker/jenkins:/var/jenkins_home --na ...

  5. 关于centOS安装配置xampp那点事

    1.到官网下载centOS对应版本的xampp,应该是以tar.gz为后缀的 2.tar -zxf 下载的包 3.mv lampp /opt 4.service mysqld stop因xampp里自 ...

  6. Python学习3——列表和元组

    一.通用序列操作——索引.切片.相加.相乘.成员资格检查 1.索引,正序从0开始为第一个元素,逆序从-1开始,-1为最后一个元素 >>> greeting[0] 'h' >&g ...

  7. CF网络流练习

    1. 103E 大意: 给定$n$个集合, 满足对于任意的$k$, 任意$k$个集合的并集都不少于$k$. 要求选出$k$个集合$(k> 0)$, 使得并恰好等于$k$, 输出最少花费. Hal ...

  8. php 压缩接口

    function rtnJson($obj) { if (!headers_sent() && // 如果页面头部信息还没有输出 extension_loaded("zlib ...

  9. zepto学习(一)之click事件和tap事件比较

    一.click 和 tap 比较 两者都会在点击时触发,但是在手机WEB端,click会有 200~300 ms,所以请用tap代替click作为点击事件. singleTap和doubleTap分别 ...

  10. JS 发送弹幕

    JS实现弹幕的发送 <div class="box1"> <div class="box2" style="width: 600px ...