D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)
D. Connected Components
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.
Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:
- Temporarily disconnect the cables with indexes from l**i to r**i, inclusive (the other cables remain connected).
- Count the number of connected components in the graph that is defining the computer network at that moment.
- Re-connect the disconnected cables with indexes from l**i to r**i (that is, restore the initial network).
Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.
Input
The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.
The following m lines contain the cables' description. The i-th line contains space-separated pair of integers x**i, y**i (1 ≤ x**i, y**i ≤ n; x**i ≠ y**i) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.
The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers l**i, r**i (1 ≤ l**i ≤ r**i ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.
Output
Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.
Examples
input
Copy
6 51 25 42 33 13 661 32 51 55 52 43 3
output
Copy
456342
题意:
给你一个含有n个点,m个边的无向图。
以及q个询问
每一个询问,给定一个l和r,代表在原本的图中,删除e[l]~e[r] 这些边,
求剩下的图中联通快的个数。
思路:
我们建立2*m个并查集,
前m个是从1到m个边依次加入时的图网络联通情况,用并查集数组a表示
后m个维护反过来,即第m个到第1个边以此加入时的图网络联通情况。用并查集数组b来表示
对于每一个询问:
我们将a[l-1]和b[r+1]两个并查集合并,即可求得图中联通快的个数。
时间复杂度为\(O(n*m)\)
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 10010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
struct dsu
{
int fa[505];
void init()
{
repd(i, 1, n)
{
fa[i] = i;
}
}
int findpar(int x)
{
if (fa[x] == x)
{
return x;
} else {
return fa[x] = findpar(fa[x]);
}
}
void mg(int a, int b)
{
a = findpar(a);
b = findpar(b);
if (a != b)
{
fa[a] = b;
}
}
int getans()
{
int res = 0;
repd(i, 1, n)
{
if (fa[i] == i)
{
res++;
}
}
return res;
}
} a[maxn], b[maxn];
dsu t1, t2;
pii c[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
while (~du2(n, m))
{
a[0].init();
b[m + 1].init();
t1.init();
repd(i, 1, m)
{
du2(c[i].fi, c[i].se);
t1.mg(c[i].fi, c[i].se);
a[i] = t1;
}
t1.init();
for (int i = m; i >= 1; --i)
{
t1.mg(c[i].fi, c[i].se);
b[i] = t1;
}
int q;
scanf("%d", &q);
int l, r;
while (q--)
{
du2(l, r);
t2 = a[l - 1];
repd(i, 1, n)
{
// chu(t2.findpar(i));
// chu(b[r + 1].findpar(i));
t2.mg(t2.findpar(i), b[r + 1].findpar(i));
}
printf("%d\n", t2.getans() );
}
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)的更多相关文章
- Croc Champ 2013 - Round 1 E. Copying Data 分块
E. Copying Data time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- Croc Champ 2013 - Round 1 E. Copying Data 线段树
题目链接: http://codeforces.com/problemset/problem/292/E E. Copying Data time limit per test2 secondsmem ...
- Croc Champ 2013 - Round 2 C. Cube Problem
问满足a^3 + b^3 + c^3 + n = (a+b+c)^3 的 (a,b,c)的个数 可化简为 n = 3*(a + b) (a + c) (b + c) 于是 n / 3 = (a + b ...
- Educational Codeforces Round 37 E. Connected Components?(图论)
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论
E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- [Redux] Using withRouter() to Inject the Params into Connected Components
We will learn how to use withRouter() to inject params provided by React Router into connected compo ...
随机推荐
- MySQL之LEFT JOIN中使用ON和WHRERE对表数据
背景 left join在我们使用mysql查询的过程中可谓非常常见,比如博客里一篇文章有多少条评论.商城里一个货物有多少评论.一条评论有多少个赞等等.但是由于对join.on.where等关键字的不 ...
- jquery清除元素的点击事件
$("#id").css("pointer-events", "none");
- Linux中 cmake-3.x 编译安装以及man page添加
首先回顾一下 cmake-2.x 的编译安装. ================ cmake-2.x编译安装说明 ================编译安装的命令: ./bootstrap --pref ...
- Linux磁盘文件系统与格式化实战(一)
fdisk分区的实质: 用fdisk分区的实质,就是修改0磁头0磁道1扇区的前446字节之后的64字节的分区表信息. 问题:可以使用fdisk分区的磁盘大小必须小于2T,如果大于2T呢,分区就用par ...
- 【51nod】2591 最终讨伐
[51nod]2591 最终讨伐 敲51nod是啥评测机啊,好几次都编译超时然后同一份代码莫名奇妙在众多0ms中忽然超时 这道题很简单就是\(M\)名既被诅咒也有石头的人,要么就把石头给没有石头被诅咒 ...
- pb相关小技巧或用法
1.动态post window lwlw = w_main lw.dynamic post event ue_all(ls_no,ls_table) 2.打开隐藏窗口 IF NOT IsValid(w ...
- Delphi cxpagecontrol融合窗体
功能说明: 一.在需要融合的每个窗体加一句 initialization RegisterClasses([TFrmDataDict]); //类名 二.cxpagecontrol融合窗体,在调用时 ...
- 安装gcc过程中遇到相互依赖的问题
在离线安装gcc的时候需要安装一些包,但是在安装 glibc-common glibc遇到一个很恶心的问题,这两个包相互依赖. 经查询才发现需要一起安装这两个依赖包.真是有趣的很 rpm -iv ...
- 多线程之thread和runnable
Runnanle方式可以避免Thread由于单继承特性带来的缺陷. Runnable代码可以被多个线程(thread实例)共享,适用于多个线程处理同一资源的情况. 线程的生命周期:创建,就绪,阻塞,运 ...
- 搞懂String、StringBuffer、StringBuilder的区别
String.StringBuffer.StringBuilder有什么区别呢? 1.String: 首先String是不可变的这是家喻户晓的,它的底层是用一个final修饰的char数组来保存数据的 ...