题意

题目链接

分析

不难发现终态一定是 \([2,n-2]\) 中的每个点都与 \(n\) 连边。

关于凸多边形的划分问题,可以将它看作一棵二叉树:每个树点可以看做点可以看做边。

本题中看做点来处理,并将与 \(n\) 号点相连的所有节点看作一次分割(这些点之间一定有连边),每个分割出的区间(也是一棵树)里的根连到树的根。

对于第一问,答案为 \(n-3\) 条边中未连接 \(n\) 号点的边数。容易构造一种方案达到下界:

对于树的根,不同的子树每一步有且仅有一个位置满足可以旋转。这个点没有和 \(n\) 相连,且与 \(n\) 的连线 和 1 条线段相交。

所以对每个非根节点有: \(f_u=(s_u-1)!\prod \frac{f_v}{s_v!}\)

对于根节点有:\(f_{rt}=s_{rt}!\prod \frac{f_v}{s_v!}\)

所以对于每个非根节点,在 \(f_{rt}\) 中的贡献都是 \(\frac{(s_u-1)!}{s_u!}=\frac{1}{s_u}\)

所以答案可以写成:\(\frac{ans1!}{\prod\limits_{(l,r)\in E,r \ne n}(r-l-1)}\)

对于 \(m\) 个拓展状态,可以考虑删边和加边,\(a,b,c,d\) 中一定满足 \(b\) 是 \(c\) 所有出边中的次小值, \(d\) 是 \(c\) 所有出边中的最大值,所以每次确定 \(b,d\) 就可以 \(O(1)\) 了。

复杂度 \(O(n+m)\) 。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i, a, b) for(int i = a; i <= b; ++i)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 1e5 + 7, mod = 1e9 + 7;
int type, n, ans1, m, ans2 = 1;
int inv[N], L[N], R[N], L2[N];
void upd(int l, int r, int v) {
if(r == n) return;
if(v == 1)
ans2 = (LL) ans2 * inv[r - l - 1] % mod * (++ans1) % mod;
else
ans2 = (LL) ans2 * (r - l - 1) % mod * inv[ans1--] % mod;
}
short num[100];
void print(int x) {
short len = 0;
do {
num[len++] = x % 10;
x /= 10;
}while(x);
for(short i = len - 1; ~i; --i) putchar(num[i] + '0');
}
int main() {
type = gi(), n = gi();
inv[1] = 1;
rep(i, 2, n) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
R[1] = n, L[n] = 1;
rep(i, 2, n - 1) L[i] = i - 1, L2[i] = i, R[i] = i + 1;
rep(i, 1, n - 3) {
int x = gi(), y = gi();
Max(R[x], y);
if(x < L[y]) {
L2[y] = L[y], L[y] = x;
}else Min(L2[y], x);
upd(x, y, 1);
}
m = gi();
print(ans1); if(type) putchar(' '), print(ans2); puts("");
while(m--) {
int a = gi(), c = gi(), b = L2[c], d = R[c];
upd(a, c, -1);
upd(b, d, 1);
print(ans1); if(type) putchar(' '), print(ans2); puts("");
upd(b, d, -1);
upd(a, c, 1);
}
return 0;
}

[HNOI2019]多边形[二叉树建模、组合计数]的更多相关文章

  1. 长沙理工大学第十二届ACM大赛-重现赛 大家一起来数二叉树吧 (组合计数)

    大意: 求n结点m叶子二叉树个数. 直接暴力, $dp[i][j][k][l]$表示第$i$层共$j$节点, 共$k$叶子, 第$i$层有$l$个叶子的方案数, 然后暴力枚举第$i$层出度为1和出度为 ...

  2. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  3. FJOI2020 的两道组合计数题

    最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...

  4. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  5. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  6. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  9. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

随机推荐

  1. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)

    LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...

  2. Android为TV端助力 最简单的自定义圆点view

    首先创建一个选择器,用来判断圆点状态,可以根本自己的需求改 <selector xmlns:android="http://schemas.android.com/apk/res/an ...

  3. Android为TV端助力 关于android的一些基础知识

    怕自己以后忘了,所以在这里先写写! equal和==的区别是,一个用于判断字符串,一个用于判断int是否相等 equal比较的是对象,==比较的是值

  4. shell中的set、seq、eval、exec、&&和||

    一.set 查看set 帮助: bash -c "help set" 选项: -e:任何命令执行失败(非0 status)直接退出 -x: 打印执行过程的命令行.参数 +e:命令执 ...

  5. java----自动类型转换

  6. SQL SERVER查询字段在哪个表里

    ); SET @ColumnName='字段名的模糊匹配'; SELECT 表名=D.NAME, 表说明 THEN ISNULL(F.VALUE, ' ') ELSE ' ' END, 字段序号 = ...

  7. C#发布和调试WebService

    一.编写并发布WebService服务 1.新建空web应用程序

  8. IIS 使用OpenSSL 生成的自签名证书,然后使用SingalR 客户端访问Https 站点通信

    使用SignalR 的客户端去发送消息给使用 https 部署的站点,官方文档目前并没有详细的教程,所以在此记录下步骤: 使用管理员身份打开cmd 窗口,选择一个整数保存文件夹的地址,切换到对应的文件 ...

  9. 线程ThreadDemo04

    package day190109; public class 线程ThreadDemo04 { public static void main(String[] args) throws Inter ...

  10. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...