方差分析和回归分析。

用数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作 ANOVA。

比如:从用不同工艺制作成的灯泡中,各自抽取了若干个测量寿命,腿短这几种工艺制成的灯泡是否有显著差异;用几种化肥和几种小麦品种种子在若干试验田里种植小麦,腿短不同的化肥和小麦品种对产量有无显著影响。

简而言之,就是对影响指标(实验的结果)的诸多因素进行分析,找出有显著影响的因素。不同的因素叫做一个水平。比如,用化肥1、品种1就是因素处于一个水平,达到指标1(产量),用方差分析的方法得到的是某个因素对指标的影响是不是显著的,比如用化肥1还是2这个因素对产量影响是否是显著的。

单因素方差分析 只考虑一个因素 A对所关心的指标的影响, A取几个水平,在每个水平上作若干 个试验,试验过程中除 A外其它影响指标的因素都保持不变(只有随机因素存在),我 们的任务是从试验结果推断,因素 A对指标有无显著影响,即当 A取不同水平时指标 有无显著差别。

方差分析的理论推导(建模写作必备)见《数学建模算法与应用》。

MATLAB实现:

1. 单因素方差分析

1)均衡数据(单因素A的每个水平取样数相同)

p = anoval(x)

param:

x:m*r的矩阵,m是每个水平取样数,r是A因素的水平数。即,x的一列是一个水平的取样数据。

return:

p是一个概率,当p>α(α默认0.05)时接受H0,否则拒绝H0。接受H0说明A因素对于指标没有显著影响,也即没有差异;拒绝H0说明是有显著影响的。

此外,还输出一个方差表和Box图。

注意:接受H0 ,是将 5 名工人的生产率作为一个整体进行假设检验的结果,并不表 明取其中 2 个工人的生产率作两总体的均值检验时,也一定接受均值相等的假设。

例子:

2) 非均衡数据(单因素的各个水平取样数不同)

p = anoval(x,group);

param:

x :为向量,从第 1 组到第r 组数据依次排列;

group: 为与 x 同长度的向量,标志 x 中数据的组别(在与 x 第i组数据相对应的位置处输入整数 ) 。也就是group向量的每一个数说明x的一个数是属于哪个组。

例子:

2. 双因素方差分析

统计工具箱中用 anova2 作双因素方差分析。命令为

p=anova2(x,reps)

param:

x :不同列的数据表示单一因素的变化情况,不同行中的数据表示另一因素的变化情 况。

如果每种行—列对(“单元”)有不止一个的观测值,则用参数 reps 来表明每个“单 元”多个观测值的不同标号,即 reps 给出重复试验的次数t。

例子:

2. 回归分析

回归分析与曲线拟合区分。

曲线拟合是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数据拟合得好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要 作的工作是由数据用小二乘法计算函数中的待定系数。

但是,从数理统计的观点看,这里涉及的都是随机变量,我们根据一个样本计算出的那些系数,只是它们的一个(点)估计,应该对它们作区间估计或假设检验,如果置信区间太大,甚至包含了零点,那么系数的估计值是没有多大意义的。可以用方差分析 方法对模型的误差进行分析,对拟合的优劣给出评价。

简而言之:回归分析就是对拟合问题作的统计分析。

1)必备的知识(重点)

数理统计样本方差,样本均值、期望、方差、k阶矩、k阶中心距的概念。

数据的标准化处理:

2)一元线性回归

1. 用最小二乘法求出回归系数(即回归方程的待定系数)。

2. 拟合效果分析

看以下几个标度:

a. 残差的样本方差(标准差)

拟合方程求出的y与真实的y之差叫残差。求这个残差的方差。越小越精确。

b. 判定系数(拟合优度)

建立一元线性回归模型的目的, 就是试图以x 的线性函数来解释 y 的变异。

->求样本的y的方差,记做SST:

->求回归方程求出的y估的方差,记做SSR:

->SSE = SST - SSR,即为残差平方和:

->可以看到: SSE = SST - SSR; dfT = dfR + dfE;

从上式可以看出,y 的变异是由两方面的原因引起的;一是由于x 的取值不同,而 给 y 带来的系统性变异;另一个是由除 x以外的其它因素的影响。

也就是说:

从而,可以指定判定如下:

定义一个测量标准来说明回归方程对原始数据的拟合程度,这就是所谓 的判定系数,有些文献上也称之为拟合优度。

3. 显著性检验

一元线性回归,我们假设的是y和x是线性关系,但这个线性关系的假定是否靠谱,还要进行显著性检验。

换句话说,β1系数就是线性程度,若β1趋向0,则线性关系不显著。

假设检验:

H0:β1 = 0;

H1:β1 ≠ 0;

检验统计量(推导见课本):

传统检验,若接受H0,则线性关系不显著。

4. 回归系数的显著性检验

回归参数的检验是考察每一个自变量对因变量的影响是否显著。换句话说,就是要 检验每一个总体参数是否显著不为零。

也就是说,若某一个回归系数接近0,那么这个对应的变量对y的影响就是不显著的。我们对每一个回归系数进行是否等于0的假设检验,得到显著性分析。

对于每一个βi,检验:

H0:βi = 0;

H1:βi ≠ 0;

检验统计量为:

决策为:

5. 利用回归方程进行预测

这里有点估计、区间估计。

点预测代数即可。

区间预测比较复杂,用到需要查阅。

===

多元线性回归的步骤与上述类似,回归系数更多,检验统计量不同,用到的时候查阅即可。而且,某些判定标准也有出入,用到需要仔细研读《数学建模算法与应用》。

接下来要继续的:

MATLAB中的多元线性回归:(记忆的)

(多项式的,一次的,二次的。。。)

偏相关系数。

逐次回归(重要)。

岭估计(岭回归)。

主成分估计。

【数学建模】day07-数理统计II的更多相关文章

  1. BITED数学建模七日谈之一:参加全国大学生数学建模比赛前你需要积累哪些

    大家好,我是数学中国的版主magic2728,非常高兴能够借助数学中国这个平台分享一些自己的经验,帮助大家在国赛的最后备战中能够最后冲刺提高.分享一共分为七个部分,分七天写给大家,下面是第一个部分:参 ...

  2. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  3. python 版 mldivide matlab 反除(左除)《数学建模算法与程序》Python笔记

    今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from s ...

  4. 在数学建模中学MATLAB

    为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137 ...

  5. BITED数学建模七日谈之七:临近比赛时的准备工作

    经过前面六天的文章分享,相信大家对数学模型的相关准备.学习都有了更新的认识,希望大家能从中有所收获,以便更高效地准备比赛和学习数学模型,本文是数学建模经验谈的最后一天:临近比赛的准备工作,希望在临近比 ...

  6. BITED数学建模七日谈之六:组队建议和比赛流程建议

    今天进入数学建模经验谈第六天:组队建议和比赛流程建议 数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率. 三个人的分工 ...

  7. BITED数学建模七日谈之五:怎样问数学模型问题

    下面进入数学建模经验谈第五天:怎样问数学模型问题 写这一篇的目的主要在于帮助大家能更快地发现问题和解决问题,让自己的模型思路有一个比较好的形成过程. 在我们学习数学模型.准备比赛的时候,经常会遇到各种 ...

  8. BITED数学建模七日谈之四:数学模型分类浅谈

    本文进入到数学建模七日谈第四天:数学模型分类浅谈 大家常常问道,数学模型到底有哪些,分别该怎么学习,这样能让我们的学习有的放矢,而不至于没了方向.我想告诉大家,现实生活中的问题有哪些类,数学模型就有哪 ...

  9. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

随机推荐

  1. redis为什么这么火该怎么用

    最近一些人在介绍方案时,经常会出现redis这个词,于是很多小伙伴百度完redis也就觉得它是一个缓存,然后项目里面把数据丢进去完事,甚至有例如将实体属性拆分塞进redis hash里面的奇怪用法等等 ...

  2. jsp相关基础知识

    一.JSP简介 JSP全称是Java Server Page,它和Servlet一样,也是sun公司推出的一套开发动态web资源的技术,称为JSP/Servlet规范.其本质也是一个Servlet. ...

  3. Java获取文件Content-Type的四种方法

    HTTP Content-Type在线工具 有时候我们需要获取本地文件的Content-Type,已知 Jdk 自带了三种方式来获取文件类型. 另外还有第三方包 Magic 也提供了API.Magic ...

  4. Chrome开发者工具应对页面跳转页面点击事件等实用干货

    1.如何解决页面跳转 打开Preserve log即可 禁用页面缓存在右边的disable cache 2.如何监听页面点击 重要的是举一反三,看不懂英文去翻译!Mouse鼠标,click点击,,,, ...

  5. 【C#复习总结】析构函数

    上篇提到析构函数,就顺便复习一下. 一 C# 析构函数 1.1 析构函数的定义 析构函数用于释放被占用的系统资源. 析构函数的名字由符号“-”加类名组成. 1.2 析构函数注意的问题 使用析构函数时, ...

  6. unixbench 物理机性能与虚拟机性能测试对比

    1.  测试方法 wget https://download.laobuluo.com/tools/UnixBench5.1.3.tgz tar -zxvf UnixBench5.1.3.tgz cd ...

  7. Python全栈开发之路 【第三篇】:Python基础之字符编码和文件操作

    本节内容 一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件语句: if 条件成立: val = 1 else: val = 2 改成三元运算: val = 1 if 条件成 ...

  8. 小P的金字塔

    题目描述 小P感到自己前几天太作了,于是非常有远见的决定为自己建立一座金字塔. 现在他有n种标准长方体的石头,每种石头只有两个,第i种石头是长宽高分别为Xi,Yi,Zi的长方体.由于整个工程只有小P一 ...

  9. Column 'parent_id' specified twice

    Hibernate Column 'parent_id' specified twice问题解决--insertable = false, updatable = false的使用 - shendeg ...

  10. Python3练习题 006 冒泡排序

    import random a = [random.randint(1,100) for i in range(10)]def bu(target): length = len(target) whi ...