题意:给你n个城市,每个城市之间有一条有向边,将城市划分为几个区域,问你最小的划分方法,

划分规则为:能相互到达的放在一个区域;然后区域内的a,b两点肯定存在某种方式,使得a能到b或者b能到a(注意,这里没说一定是相互能到);

解题思路:这道题其实就是DAG上的对应二分图的最小路径覆盖;

因为DAG,所以先缩点,然后对应二分图的最小路径覆盖=顶点数-对应二分图的最大匹配;

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#define N 5005
#define M 100005
using namespace std;
struct node
{
int x;
int y;
}a[M];
struct Edge
{
int next;
int to;
}edge[M];
int ans=0;
int match[M];
int head[M];
int instack[M];
int visit[M];
int low[M];
int dfn[M];
int sccno[M];
int book[M];
int cnt;
int step;
int index;
int scc_cnt;
bool e[N][N];
int n,m;
vector<int>scc[N];
void add(int u,int v)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
head[u]=cnt++;
}
void tarjan(int u)
{
low[u]=dfn[u]=++step;
visit[u]=1;
instack[++index]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
if(!dfn[edge[i].to])
{
tarjan(edge[i].to);
low[u]=min(low[u],low[edge[i].to]);
}
else if(visit[edge[i].to])
{
low[u]=min(low[u],dfn[edge[i].to]);
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
do
{
scc[scc_cnt].push_back(instack[index]);
sccno[instack[index]]=scc_cnt;
visit[instack[index]]=0;
index--;
}
while(u!=instack[index+1]);
}
return;
} bool dfs(int u)
{
for(int i=1;i<=scc_cnt;i++)
{
if(book[i]==0&&e[u][i])
{
book[i]=1;
if(match[i]==-1||dfs(match[i]))
{
match[i]=u;
return true;
}
}
}
return false;
}
void init()
{
memset(instack,0,sizeof(instack));
memset(match,-1,sizeof(match));
memset(e,0,sizeof(e));
memset(visit,0,sizeof(visit));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(head,-1,sizeof(head));
memset(book,0,sizeof(book));
cnt=step=scc_cnt=index=ans=0;
}
int main()
{
int t;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
add(a[i].x,a[i].y);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
for(int i=1;i<=m;i++)
{
if(sccno[a[i].x]!=sccno[a[i].y])
{
e[sccno[a[i].x]][sccno[a[i].y]]=1;
// e[sccno[a[i].y]][sccno[a[i].x]]=1;
}
}
for(int i=1;i<=scc_cnt;i++)
{
memset(book,0,sizeof(book));
if(dfs(i))
ans++;
}
printf("%d\n",scc_cnt-ans);
init();
}
return 0;
}

  

hdu—3861(tarjan+二分图)的更多相关文章

  1. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  2. HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)

    题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...

  3. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  4. hdu 3861 The King’s Problem trajan缩点+二分图匹配

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  6. 缩点+最小路径覆盖 hdu 3861

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意:输入t,表示t个样例.接下来每个样例第一行有两个数n,m表示点数和有向边的数量,接下来输入 ...

  7. HDU 3861.The King’s Problem 强联通分量+最小路径覆盖

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...

  9. hdu 2119(简单二分图) Matrix

    http://acm.hdu.edu.cn/showproblem.php?pid=2119 一个由0和1构成的矩阵,每次选取一行或者一列将其中的1变成0,求最小删除次数 简单的二分图应用,矩阵的横坐 ...

随机推荐

  1. Git中删除指定文件

    之前的博客Git基础使用教程介绍了Git这个开源分布式管理系统的一些基础操作,这篇博客,介绍下如何利用Git删除远程仓库的文件... 1.拉取远程仓库的文件到本地 git clone xxx 如果还未 ...

  2. face detection[PyramidBox]

    本文来自<PyramidBox: A Context-assisted Single Shot Face Detector>,是来自百度的作品,时间线为2018年8月. 0 引言 最近基于 ...

  3. 抽取非基本验证到规则文件 - A2D规则引擎

    基本验证与业务验证,基本验证就是始终保持不变的验证规则,可以通过如下硬编码实现: public class Order { [Required] [Range(")] public deci ...

  4. Python 学习 第十二篇:pandas

    pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,最常用的数据结构是:序列Series和数据框DataFrame,Series类似于numpy中的一维数组,类似于关 ...

  5. Item 19: 使用srd::shared_ptr来管理共享所有权的资源

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 使用带垃圾回收机制语言的程序员指出并嘲笑C++程序员需要遭受防止资 ...

  6. layui轮播中箭头不起作用问题

    layui轮播中箭头不起作用问题 layui轮播插件在使用中发现箭头不起作用其他都合适,是什么原因造成的呢?发现单独提出layui中的demo是合适的,通过仔细慢慢的寻找,发现layui.use('c ...

  7. Codeblocks 遇到的问题 Cannot open output file, permission denied

    Codeblocks下运行C++的程序时,偶尔会出现  Cannot open output file, permission denied 的问题,导致不能够编译. 在 Stack Overflow ...

  8. H5 57-文章界面

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. elasticsearch聚合操作——本质就是针对搜索后的结果使用桶bucket(允许嵌套)进行group by,统计下分组结果,包括min/max/avg

    分析 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计.它很像SQL中的GROUP BY但是功能更强大. 举个例子,让我们找到所有职员中最大 ...

  10. PAT L3-016 二叉搜索树的结构

    https://pintia.cn/problem-sets/994805046380707840/problems/994805047903240192 二叉搜索树或者是一棵空树,或者是具有下列性质 ...