【ZJOI2017】仙人掌





参考博客:https://www.cnblogs.com/wfj2048/p/6636028.html

我们先求出\(dfs\)树(就是\(dfs\)一遍),然后问题就变成了树形\(DP\)。

我们先判断无解:就用定义来判断,如果一条边出现在多个环里面就无解。

然后我们将所有在环上的边拆了,因为这些边不可能再出现在一个新的环中。于是我们得到了一个森林。

我们设\(f_v\)表示以\(v\)为根的子树得到仙人掌的方案数。\(ans=\prod_{v\ is\ root} f_v\)。

首先我们考虑子树之间不连边,容易得到:\(f_v=\prod f_{son_v}\),也就是所有子树\(f\)之积。

然后我们观察子树之间的连边:一个子树最多只会连出去一条边,也就是只会两两配对连边。我们设\(g_v\)表示有\(v\)个子树两两之间连边的方案数,则:

\[g_v=g_{v-1}+(v-1)*g_{v-2}
\]

这个转移的意义是考虑第\(v\)个点连不连边,如果不连,方案数就是其他\(v-1\)个点连边的方案;如果连,就从之前的\(v-1\)个点中任选一个相连,剩下的再连边。

设\(|sn_v|\)表示\(v\)的儿子个数。则\(f_v=g_{|sn_v|}*\prod f_{son_v}\)。

我的理解是:假设\(v\)的两个儿子\(a,b\)的子树之间要连边,设\(e_a,e_b\)分别表示\(a\)到\(v\)和\(b\)到\(v\)的边,那么我们一定是将之前覆盖了\(e_a\)和\(e_b\)的两个环的起点(深度最深的那个点,如果没有,就是\(a,b\))连接在一起。所以答案是\(g_{|sn_v|}\)乘上所有子树中连边的方案数。

但是\(v\)的子树中还可以向\(v\)的父亲连边。我们就把\(v\)的父亲也看做一个子节点。所以:

\[\begin{cases}
f_v=g_{|sn_v|}*\prod f_{sn_v}\ (v\ is\ not\ root)\\
f_v=g_{|sn_v|+1}*\prod f_{sn_v}\ (v\ is\ root)
\end{cases}
\]

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 1000005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=998244353;
int n,m;
int x[N],y[N];
struct graph {
int cnt,to[N<<2],nxt[N<<2];
int h[N<<1];
void add(int i,int j) {
to[++cnt]=j;
nxt[cnt]=h[i];
h[i]=cnt;
}
void Init() {
cnt=0;
for(int i=1;i<=n;i++) h[i]=0;
}
}s; ll f[N],g[N];
int dfn[N],id;
int dep[N],fa[N];
int tim[N];
void dfs(int v) {
dfn[v]=++id;
for(int i=s.h[v];i;i=s.nxt[i]) {
int to=s.to[i];
if(dfn[to]) continue ;
fa[to]=v;
dep[to]=dep[v]+1;
dfs(to);
}
} bool cmp(int a,int b) {return dep[a]<dep[b];} bool vis[N];
void DP(int v,int flag) {
vis[v]=1;
f[v]=1;
int sn=0;
for(int i=s.h[v];i;i=s.nxt[i]) {
int to=s.to[i];
if(tim[to]>1) continue ;
if(to==fa[v]||fa[to]!=v) continue ;
sn++;
DP(to,0);
f[v]=f[v]*f[to]%mod;
}
if(flag) f[v]=f[v]*g[sn]%mod;
else f[v]=f[v]*g[sn+1]%mod;
} int st[N];
void work() {
for(int i=1;i<=m;i++) {
int a=x[i],b=y[i];
if(dfn[a]<dfn[b]) swap(a,b);
while(a!=b) {
tim[a]++;
if(tim[a]>2) {
cout<<0<<"\n";
return ;
}
a=fa[a];
}
}
for(int i=1;i<=n;i++) st[i]=i;
sort(st+1,st+1+n,cmp);
ll ans=1;
for(int i=1;i<=n;i++) {
int now=st[i];
if(vis[now]) continue ;
DP(now,1);
ans=ans*f[now]%mod;
}
cout<<ans<<"\n";
} void Init() {
s.Init();
for(int i=1;i<=n;i++) vis[i]=tim[i]=fa[i]=dfn[i]=dep[i]=0;
id=0;
} int main() {
g[0]=g[1]=1;
for(int i=2;i<=500005;i++) g[i]=(g[i-1]+g[i-2]*(i-1))%mod;
int T=Get();
while(T--) {
n=Get(),m=Get();
Init();
for(int i=1;i<=m;i++) {
x[i]=Get(),y[i]=Get();
s.add(x[i],y[i]),s.add(y[i],x[i]);
}
dep[1]=1;
dfs(1);
work();
}
return 0;
}

【ZJOI2017】仙人掌的更多相关文章

  1. 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)

    [BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...

  2. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  3. bzoj4784 [Zjoi2017]仙人掌

    Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...

  4. ●洛谷P3687 [ZJOI2017]仙人掌

    题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...

  5. 【做题】ZJOI2017仙人掌——组合计数

    原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...

  6. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  7. zjoi2017 仙人掌

    题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...

  8. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  9. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

  10. 【题解】ZJOI2017仙人掌

    感觉这题很厉害啊,虽然想了一天多但还是失败了……(:д:) 这题首先注意到给定图中如果存在环其实对于答案是没有影响的.然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u ...

随机推荐

  1. JQuery官方学习资料(译):$( document ).ready()

         一个页面直到document是”ready“才能被安全的操作,Jquery为你检查这种状态.代码包含在$( document ).ready()的内部将会仅仅运行一次在页面Document ...

  2. MyBatis:事务回滚

    事务的隔离级别:DEFAULT.READ_UNCOMMITED.READ_COMMITTED.REPEATABLE_READ.SERIALIZABLE 事务的传播行为:REQUIRED.SUPPORT ...

  3. 华硕笔记本的U盘启动

    开机以后有两种方式: 1:按住ESC键,在弹出的见面直接选择USB启动进入. 2:按F2进BLOS进入,在boot里面原则第一个,找到USB作为第一启动项,再按F10保存一下即可.

  4. js控制随机数生成概率代码实例

    基本思路:把Math.random()js随机数生成的数看着百分比,然后定义每个整数值取值范围. 具体内容如下,供大家参考 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  5. K8s helm 创建自定义Chart

    # 删除之前创建的 chart helm list helm delete --purge redis1 # 创建自定义 chart myapp cd ~/helm helm create myapp ...

  6. css:Media Queries: How to target desktop, tablet and mobile?

    <!doctype html> <html> <head> <meta name="viewport" content="wid ...

  7. 接口自动化 [授客]基于python+Testlink+Jenkins实现的接口自动化测试框架V3.0

    基于python+Testlink+Jenkins实现的接口自动化测试框架V3.0   by:授客 QQ:1033553122     博客:http://blog.sina.com.cn/ishou ...

  8. listview reclyerview上下拉刷新

    x写控件挺麻烦的,因为有很多细节要处理好,列表控件使用太频繁了,网上也各种自定义的方法,一般的listview自定义肯定会联想到加个头部,然后监听事件加动画,其实方式很多种,今天记录的方式是另外一种方 ...

  9. DAY4(python)打印字符串以及增删改查

    用while循环打印字符串 #if i in s: # print ( i ) s='nanfjkhndaol' index = 0 while 1 : print (s[index]) index+ ...

  10. 大约当你拿捏的准世事的分寸时,你便会成功了。(NULL)

    (网络盗图)