1.apachecn视频(机器学习实战)

https://github.com/apachecn/AiLearning

https://space.bilibili.com/97678687/#/channel/detail?cid=22486

2.莫烦

https://morvanzhou.github.io/tutorials/machine-learning/sklearn/2-2-general-pattern/

https://github.com/MorvanZhou/tutorials/tree/master/sklearnTUT

源代码在sklean 0.20.0 运行问题

from sklearn.learning_curve import 改为 from sklearn.model_selection import
scoring='mean_squared_error' 改为 scoring='neg_mean_squared_error'

http://sklearn.apachecn.org/cn/stable/modules/model_evaluation.html

#-------------------------------------
用Python开始机器学习(sklearn)

https://blog.csdn.net/lsldd/article/details/41357931

机器学习之路

https://www.cnblogs.com/Lin-Yi/p/8970527.html

https://github.com/linyi0604/MachineLearning

20181004还在学习的人

https://blog.csdn.net/dingming001/article/details/82935715

3.Hands-on Machine Learning with Scikit-Learn and TensorFlow

https://github.com/apachecn/hands_on_Ml_with_Sklearn_and_TF

https://www.jianshu.com/p/49bfb59b96b7

https://github.com/ageron/handson-ml

ubuntu安装

清华大学开源软件网站上选择合适的源文件并下载

https://blog.csdn.net/hgdwdtt/article/details/78633232

命令

anaconda search -t conda tensorflow

conda源更改:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --set show_channel_urls yes

vi ~/.condarc

删除default

conda info

https://jingyan.baidu.com/article/1876c8527be1c3890a137645.html

4.anaconda

Using Anaconda

When using Anaconda, you can optionally create an isolated Python environment dedicated to this project. This is recommended as it makes it possible to have a different environment for each project (e.g. one for this project), with potentially different libraries and library versions:

$ conda create -n mlbook python=3.5 anaconda
$ source activate mlbook

This creates a fresh Python 3.5 environment called mlbook (you can change the name if you want to), and it activates it. This environment contains all the scientific libraries that come with Anaconda. This includes all the libraries we will need (NumPy, Matplotlib, Pandas, Jupyter and a few others), except for TensorFlow, so let's install it:

$ conda install -n mlbook -c conda-forge tensorflow

This installs the latest version of TensorFlow available for Anaconda (which is usually not the latest TensorFlow version) in the mlbook environment (fetching it from the conda-forge repository). If you chose not to create an mlbook environment, then just remove the -n mlbook option.

Next, you can optionally install Jupyter extensions. These are useful to have nice tables of contents in the notebooks, but they are not required.

$ conda install -n mlbook -c conda-forge jupyter_contrib_nbextensions

Starting Jupyter

If you want to use the Jupyter extensions (optional, they are mainly useful to have nice tables of contents), you first need to install them:

$ jupyter contrib nbextension install --user

Then you can activate an extension, such as the Table of Contents (2) extension:

$ jupyter nbextension enable toc2/main

Okay! You can now start Jupyter, simply type:

$ jupyter notebook

Enviroment setup

Create an enviroment from the enviroment.yml file

conda env create -f environment.yml

activate enviroment

source activate supervised

Update enviroment

conda env export > environment.yml

source

												

第25月第5天 Hands-on Machine Learning with Scikit-Learn and TensorFlow的更多相关文章

  1. 第25月第26天 dispatch_group_t dispatch_semaphore_t

    1. dispatch_group_enter(group); dispatch_group_leave(group); dispatch_group_notify(group1, queue1,bl ...

  2. 第25月25日 urlsession

    1. private lazy var session: URLSession = { let configuration = URLSessionConfiguration.default conf ...

  3. 第25月第22日 django channels

    1. https://github.com/andrewgodwin/channels-examples/ https://channels.readthedocs.io/en/latest/

  4. 第25月第18天 vue

    1.cnpm sudo chown -R $USER /usr/local  npm install -g cnpm --registry=https://registry.npm.taobao.or ...

  5. 第25月第17天 django rest framwork authentication /tmp/mysql.sock

    1.authentication https://www.django-rest-framework.org/api-guide/authentication/#authentication 2.dj ...

  6. 第25月第15天 udacity cs253

    1.cs253 https://classroom.udacity.com/courses/cs253 webapp2 Install WebOb, Paste and webapp2¶ We nee ...

  7. 第25月第11天 deeplearning.ai

    1.网易云课堂 深度学习工程师 点击进入课程地址(英文)(收费) 点击进入课程地址(中文)(免费) 第一门 神经网络和深度学习 第二门 改善神经网络 第三门 结构化机器学习项目 第四门 卷积神经网络 ...

  8. 第25月第9天 tf_tang_poems kaggle

    1.neural-style https://github.com/anishathalye/neural-style wget http://www.vlfeat.org/matconvnet/mo ...

  9. 第25月第8天 100-Days-Of-ML-Code

    1.100-Days-Of-ML-Code https://github.com/Avik-Jain/100-Days-Of-ML-Code https://github.com/llSourcell ...

  10. 第25月第7天 聚宽 svm

    1. # 克隆自聚宽文章:https://www.joinquant.com/post/2709 # 标题:基于SVM的机器学习策略 # 作者:走得很慢的海龟 import math import n ...

随机推荐

  1. git init github

    Command line instructions 执行这些命令是在windows 右菜单里面的git bash运行. Git global setup git config --global use ...

  2. OpenLayers学习笔记(三)— QML与HTML通信之 地图上点击添加自由文本

    实现在地图随意点击,弹出文本输入框,输入任意文字,完成自由文本添加的功能 作者: 狐狸家的鱼 GitHub:八至 本文链接:地图上点击添加自由文本 关于如何QML与HTML通信已经在上一篇文章 QML ...

  3. 洛谷P4169 天使玩偶 CDQ分治

    还是照着CDQ的思路来. 但是有一些改动: 要求4个方向的,但是可爱的CDQ分治只能求在自己一个角落方向上的.怎么办?旋转!做4次就好了. 统计的不是和,而是——max!理由如下: 设当前点是(x,y ...

  4. RabbitMQ入门-发布订阅模式

    兔子的Publish/Subscribe是这样的: 有个生产者P,X代表交换机,交换机绑定队列,消费者从队列中取得消息.每次有消息,先发到交换机中,然后由交换机负责发送到它已知的队列中. 生产者代码: ...

  5. mysql 存储过程中文乱码的解决方法

    CREATE PROCEDURE `PROC_FOOBAR`(id INTEGER) BEGIN DECLARE code, user_id VARCHAR(32) CHARACTER SET utf ...

  6. java类的编译、加载和执行

    一.java类的编译流程 这里主要讲的是从java文件到class文件 下图是java类编译的详细步骤: 1.词法分析:将java源代码的字符流转变为标记(Token)的集合,Token是编译过程中的 ...

  7. java中long类型的比较

    int类型最大存储10位,因此很多地方要用到long类型,它的存储位数是+-19位 范围:-9223372036854775808到9223372036854775807解释:long类型是64位的也 ...

  8. jira7通过全局js给编辑区自定义快捷键【原】

    jira7编辑区自定义快捷键 本文主要描述了jira7如何通过添加全局js引用,给文本编辑区自定义快捷键用以快速填充模板内容. jira 3/4/5可参考官方api https://developer ...

  9. Mysql查看表的建表语句

    已查询Test的建表语句为例: SHOW CREATE TABLE TEST

  10. hihoCoder #1465 : 后缀自动机五·重复旋律8

    http://hihocoder.com/problemset/problem/1465 求S的循环同构串在T中的出现次数 将串S变成SS 枚举SS的每个位置i,求出以i结尾的SS的子串 与 T的最长 ...