1.apachecn视频(机器学习实战)

https://github.com/apachecn/AiLearning

https://space.bilibili.com/97678687/#/channel/detail?cid=22486

2.莫烦

https://morvanzhou.github.io/tutorials/machine-learning/sklearn/2-2-general-pattern/

https://github.com/MorvanZhou/tutorials/tree/master/sklearnTUT

源代码在sklean 0.20.0 运行问题

from sklearn.learning_curve import 改为 from sklearn.model_selection import
scoring='mean_squared_error' 改为 scoring='neg_mean_squared_error'

http://sklearn.apachecn.org/cn/stable/modules/model_evaluation.html

#-------------------------------------
用Python开始机器学习(sklearn)

https://blog.csdn.net/lsldd/article/details/41357931

机器学习之路

https://www.cnblogs.com/Lin-Yi/p/8970527.html

https://github.com/linyi0604/MachineLearning

20181004还在学习的人

https://blog.csdn.net/dingming001/article/details/82935715

3.Hands-on Machine Learning with Scikit-Learn and TensorFlow

https://github.com/apachecn/hands_on_Ml_with_Sklearn_and_TF

https://www.jianshu.com/p/49bfb59b96b7

https://github.com/ageron/handson-ml

ubuntu安装

清华大学开源软件网站上选择合适的源文件并下载

https://blog.csdn.net/hgdwdtt/article/details/78633232

命令

anaconda search -t conda tensorflow

conda源更改:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --set show_channel_urls yes

vi ~/.condarc

删除default

conda info

https://jingyan.baidu.com/article/1876c8527be1c3890a137645.html

4.anaconda

Using Anaconda

When using Anaconda, you can optionally create an isolated Python environment dedicated to this project. This is recommended as it makes it possible to have a different environment for each project (e.g. one for this project), with potentially different libraries and library versions:

$ conda create -n mlbook python=3.5 anaconda
$ source activate mlbook

This creates a fresh Python 3.5 environment called mlbook (you can change the name if you want to), and it activates it. This environment contains all the scientific libraries that come with Anaconda. This includes all the libraries we will need (NumPy, Matplotlib, Pandas, Jupyter and a few others), except for TensorFlow, so let's install it:

$ conda install -n mlbook -c conda-forge tensorflow

This installs the latest version of TensorFlow available for Anaconda (which is usually not the latest TensorFlow version) in the mlbook environment (fetching it from the conda-forge repository). If you chose not to create an mlbook environment, then just remove the -n mlbook option.

Next, you can optionally install Jupyter extensions. These are useful to have nice tables of contents in the notebooks, but they are not required.

$ conda install -n mlbook -c conda-forge jupyter_contrib_nbextensions

Starting Jupyter

If you want to use the Jupyter extensions (optional, they are mainly useful to have nice tables of contents), you first need to install them:

$ jupyter contrib nbextension install --user

Then you can activate an extension, such as the Table of Contents (2) extension:

$ jupyter nbextension enable toc2/main

Okay! You can now start Jupyter, simply type:

$ jupyter notebook

Enviroment setup

Create an enviroment from the enviroment.yml file

conda env create -f environment.yml

activate enviroment

source activate supervised

Update enviroment

conda env export > environment.yml

source

												

第25月第5天 Hands-on Machine Learning with Scikit-Learn and TensorFlow的更多相关文章

  1. 第25月第26天 dispatch_group_t dispatch_semaphore_t

    1. dispatch_group_enter(group); dispatch_group_leave(group); dispatch_group_notify(group1, queue1,bl ...

  2. 第25月25日 urlsession

    1. private lazy var session: URLSession = { let configuration = URLSessionConfiguration.default conf ...

  3. 第25月第22日 django channels

    1. https://github.com/andrewgodwin/channels-examples/ https://channels.readthedocs.io/en/latest/

  4. 第25月第18天 vue

    1.cnpm sudo chown -R $USER /usr/local  npm install -g cnpm --registry=https://registry.npm.taobao.or ...

  5. 第25月第17天 django rest framwork authentication /tmp/mysql.sock

    1.authentication https://www.django-rest-framework.org/api-guide/authentication/#authentication 2.dj ...

  6. 第25月第15天 udacity cs253

    1.cs253 https://classroom.udacity.com/courses/cs253 webapp2 Install WebOb, Paste and webapp2¶ We nee ...

  7. 第25月第11天 deeplearning.ai

    1.网易云课堂 深度学习工程师 点击进入课程地址(英文)(收费) 点击进入课程地址(中文)(免费) 第一门 神经网络和深度学习 第二门 改善神经网络 第三门 结构化机器学习项目 第四门 卷积神经网络 ...

  8. 第25月第9天 tf_tang_poems kaggle

    1.neural-style https://github.com/anishathalye/neural-style wget http://www.vlfeat.org/matconvnet/mo ...

  9. 第25月第8天 100-Days-Of-ML-Code

    1.100-Days-Of-ML-Code https://github.com/Avik-Jain/100-Days-Of-ML-Code https://github.com/llSourcell ...

  10. 第25月第7天 聚宽 svm

    1. # 克隆自聚宽文章:https://www.joinquant.com/post/2709 # 标题:基于SVM的机器学习策略 # 作者:走得很慢的海龟 import math import n ...

随机推荐

  1. .net 调用 网易云的短信验证

    static string url = "https://api.netease.im/sms/sendcode.action"; static string appKey = & ...

  2. FluentScheduler定时器计划任务

    http://www.cnblogs.com/lgxlsm/p/6734011.html 用了FluentScheduler后,再也比想用timer计时器了. FluentScheduler 是 .N ...

  3. github在网页编写readme之后的操作

    study from : https://jingyan.baidu.com/article/f3e34a12a25bc8f5ea65354a.html

  4. app软件遵循的规范

    http://www.jianshu.com/p/a2a4c18c1900 https://wenku.baidu.com/view/ecb09b07a4e9856a561252d380eb6294d ...

  5. springcloud实战案例苏宁和海信

    http://springcloud.cn/view/341 为什么springlcoud不选用zookeeper: http://www.infoq.com/cn/articles/why-does ...

  6. (二叉树 BFS DFS) leetcode 104. Maximum Depth of Binary Tree

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  7. javascript(基础)_对数组的遍历方法总结(find, findIndex, forEach,)

    一.前言                                                                                                ...

  8. 字节转字符 OutputStreamWriter

    package cn.lideng.demo4; import java.io.FileNotFoundException; import java.io.FileOutputStream; impo ...

  9. 信用评分卡 (part 7 of 7)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  10. 图论分支-Tarjan初步-点双连通分量

    上一次我们讲到了边双,这次我们来看点双. 说实话来说,点双比边双稍微复杂一些: 学完边双,我们先看一道题 第一问都不用说了吧,多余的道路,明显的割边. 是不是首先想到用边双,但是我们来看一个图: 有点 ...