fzero

Root of nonlinear function

Syntax

  • [x,fval,exitflag,output]= fzero(___)
    example

Description

example

x = fzero(fun,x0)
triesto find a point x where fun(x) = 0. This solution is where
fun(x) changessign—fzero cannot find a root of a functionsuch as
x^2.

example

x = fzero(fun,x0,options)
uses options tomodify the solution process.

example

x = fzero(problem)
solvesa root-finding problem specified by problem.

example

[x,fval,exitflag,output]=
fzero(___)
returns
fun(x)
inthe fval output, exitflag encodingthe reason
fzero stopped, and an output structurecontaining information on the solution process.

Examples

collapse all

Root Starting From One Point

Calculate by finding the zero of the sine function near
3.

fun = @sin; % function
x0 = 3; % initial point
x = fzero(fun,x0)
x =

    3.1416

Root Starting From an Interval

Find the zero of cosine between 1 and 2.

fun = @cos; % function
x0 = [1 2]; % initial interval
x = fzero(fun,x0)
x =

    1.5708

Note that and
differ in sign.

Root of a Function Defined by a File

Find a zero of the function f(x) = x3 – 2x – 5.

First, write a file called f.m.

function y = f(x)
y = x.^3 - 2*x - 5;

Save f.m on your MATLAB® path.

Find the zero of f(x)near 2.

fun = @f; % function
x0 = 2; % initial point
z = fzero(fun,x0)
z =
2.0946

Since f(x) is a polynomial, you canfind the same real zero, and a complex conjugate pair of zeros, usingthe
roots command.

roots([1 0 -2 -5])
   ans =
2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

Root of Function with Extra Parameter

Find the root of a function that has an extra parameter.

myfun = @(x,c) cos(c*x);  % parameterized function
c = 2; % parameter
fun = @(x) myfun(x,c); % function of x alone
x = fzero(fun,0.1)
x =

    0.7854

Nondefault Options

Plot the solution process by setting some plot functions.

Define the function and initial point.

fun = @(x)sin(cosh(x));
x0 = 1;

Examine the solution process by setting options that include plot functions.

options = optimset('PlotFcns',{@optimplotx,@optimplotfval});

Run fzero including options.

x = fzero(fun,x0,options)
x =

    1.8115

Solve Problem Structure

Solve a problem that is defined by a problem structure.

Define a structure that encodes a root-finding problem.

problem.objective = @(x)sin(cosh(x));
problem.x0 = 1;
problem.solver = 'fzero'; % a required part of the structure
problem.options = optimset(@fzero); % default options

Solve the problem.

x = fzero(problem)
x =

    1.8115

More Information from Solution

Find the point where exp(-exp(-x)) = x, and display information about the solution process.

fun = @(x) exp(-exp(-x)) - x; % function
x0 = [0 1]; % initial interval
options = optimset('Display','iter'); % show iterations
[x fval exitflag output] = fzero(fun,x0,options)
 Func-count    x          f(x)             Procedure
2 1 -0.307799 initial
3 0.544459 0.0153522 interpolation
4 0.566101 0.00070708 interpolation
5 0.567143 -1.40255e-08 interpolation
6 0.567143 1.50013e-12 interpolation
7 0.567143 0 interpolation Zero found in the interval [0, 1] x = 0.5671 fval = 0 exitflag = 1 output = intervaliterations: 0
iterations: 5
funcCount: 7
algorithm: 'bisection, interpolation'
message: 'Zero found in the interval [0, 1]'

fval = 0 means fun(x) = 0, as desired.

Related Examples

Input Arguments

collapse all

fun — Function to solvefunction handle

Function to solve, specified as a handle to a scalar-valuedfunction. fun accepts a scalar
x andreturns a scalar fun(x).

fzero solves fun(x) = 0. To solve an equation
fun(x) = c(x)
,instead solve fun2(x) = fun(x) - c(x) = 0.

To include extra parameters in your function, see the example Root of Function with Extra Parameter andthe section Parameterizing Functions.

Example: @sin

Example: @myFunction

Example: @(x)(x-a)^5 - 3*x + a - 1

Data Types: function_handle

x0 — Initial valuescalar | 2-element vector

Initial value, specified as a real scalar or a 2-element realvector.

  • Scalar — fzero begins at x0 andtries to locate a point
    x1 where fun(x1) hasthe opposite sign of fun(x0). Then
    fzero iterativelyshrinks the interval where fun changes sign toreach a solution.

  • 2-element vector — fzero checksthat fun(x0(1)) and
    fun(x0(2))
    haveopposite signs, and errors if they do not. It then iteratively shrinksthe interval where
    fun changes sign to reach asolution. An interval x0 must be finite; it cannotcontain ±Inf.

Tip  Calling fzero with an interval (x0 withtwo elements) is often faster than calling it with a scalar
x0.

Example: 3

Example: [2,17]

Data Types: double

options — Options for solution processstructure, typically
created using optimset

Options for solution process, specified as a structure. Createor modify the
options
structure using optimset. fzero usesthese options structure fields.

Display

Level of display:

  • 'off' displays no output.

  • 'iter' displays output at eachiteration.

  • 'final' displays just the finaloutput.

  • 'notify' (default) displays outputonly if the function does not converge.

FunValCheck

Check whether objective functionvalues are valid.

  • 'on' displays an error when theobjective function returns a value that is
    complex, Inf,or NaN.

  • The default, 'off', displays noerror.

OutputFcn

Specify one or more user-definedfunctions that an optimization function calls at each iteration, eitheras a function handle or as a cell array of function handles. The defaultis none ([]). See
Output Functions.

PlotFcns

Plot various measures of progresswhile the algorithm executes. Select from predefined plots or writeyour own. Pass a function handle or a cell array of function handles.The default is none ([]).

  • @optimplotx plots the current point.

  • @optimplotfval plots the functionvalue.

For information on writing a custom plot function,see Plot Functions.

TolX

Termination tolerance on x,a positive scalar. The default is
eps
, 2.2204e–16.

Example: options = optimset('FunValCheck','on')

Data Types: struct

problem — Root-finding problemstructure

Root-finding problem, specified as a structure with all of thefollowing fields.

objective

Objective function

x0

Initial point for x,real scalar or 2-element vector

solver

'fzero'

options

Options structure, typically createdusing optimset

For an example, see Solve Problem Structure.

Data Types: struct

Output Arguments

collapse all

x — Location of root or sign changereal scalar

Location of root or sign change, returned as a scalar.

fval — Function value at
x
real scalar

Function value at x, returned as a scalar.

exitflag — Integer encoding the exit conditioninteger

Integer encoding the exit condition, meaning the reason fsolve stoppedits iterations.

1

Function converged to a solution x.

-1

Algorithm was terminated by the output function or plotfunction.

-3

NaN or Inf functionvalue was encountered while searching for an interval containing asign change.

-4

Complex function value was encountered while searchingfor an interval containing a sign change.

-5

Algorithm might have converged to a singular point.

-6

fzero did not detect a sign change.

output — Information about root-finding processstructure

Information about root-finding process, returned as a structure.The fields of the structure are:

intervaliterations

Number of iterations taken to find an interval containinga root

iterations

Number of zero-finding iterations

funcCount

Number of function evaluations

algorithm

'bisection, interpolation'

message

Exit message

More About

collapse all

Algorithms

The fzero commandis a function file. The algorithm, created by T. Dekker,uses a combination of bisection, secant, and inverse quadratic interpolationmethods. An Algol 60 version,
with some improvements, is given in [1]. A Fortran version, upon which fzero isbased, is in [2].

References

[1] Brent, R., Algorithms forMinimization Without Derivatives, Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations,Prentice-Hall, 1976.

Fzreo matlab的更多相关文章

  1. Matlab 绘制三维立体图(以地质异常体为例)

    前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节 ...

  2. Matlab slice方法和包络法绘制三维立体图

    前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节 ...

  3. Matlab 高斯_拉普拉斯滤波器处理医学图像

    前言:本程序是我去年实现论文算法时所做.主要功能为标记切割肝脏区域.时间有点久,很多细节已经模糊加上代码做了很多注释,因此在博客中不再详述. NOTE: 程序分几大段功能模块,仔细阅读,对解决医学图像 ...

  4. MATLAB中绘制质点轨迹动图并保存成GIF

    工作需要在MATLAB中绘制质点轨迹并保存成GIF以便展示. 绘制质点轨迹动图可用comet和comet3命令,使用例子如下: t = 0:.01:2*pi;x = cos(2*t).*(cos(t) ...

  5. linux下配置matlab运行环境(MCR)

    在安装好的matlab下有MCR(MatlabCompilerRuntime)在matlab2011/toolbox/compiler/deploy/glnxa64下找到MCRInstaller.zi ...

  6. EMD分析 Matlab 精华总结 附开源工具箱(全)

    前言: 本贴写于2016年12与15日,UK.最近在学习EMD(Empirical Mode Decomposition)和HHT(Hilbert-Huang Transform)多分辨信号处理,FQ ...

  7. Atitit MATLAB 图像处理 经典书籍attilax总结

    Atitit MATLAB 图像处理 经典书籍attilax总结 1.1. MATLAB数字图像处理1 1.2. <MATLAB实用教程(第二版)>((美)穆尔 著)[简介_书评_在线阅读 ...

  8. Atitit MATLAB 图像处理attilax总结

    Atitit MATLAB 图像处理attilax总结 1.1. 下载 Matlab7.0官方下载_Matlab2012 v7.0 官方简体中文版-办公软件-系统大全.html1 1.2. Matla ...

  9. Atitit java c# php c++ js跨语言调用matlab实现边缘检测等功能attilax总结

    Atitit java c# php c++ js跨语言调用matlab实现边缘检测等功能attilax总结 1.1. 边缘检测的基本方法Canny最常用了1 1.2. 编写matlab边缘检测代码, ...

随机推荐

  1. Android开发 - 掌握ConstraintLayout(六)链条(Chains)

    本文我们介绍链条(Chains),使用它可以将多个View连接起来,互相约束. 可以创建横向的链条,也可以创建纵向的链条,我们以横向的链条举例: 我们先创建三个按钮: 我们选中三个按钮后在上面点右键创 ...

  2. BCrypt加密算法

    用户表的密码通常使用MD5等不可逆算法加密后存储,为防止彩虹表破解更会先使用一个特定的字符串(如域名)加密,然后再使用一个随机的salt(盐值)加密. 特定字符串是程序代码中固定的,salt是每个密码 ...

  3. Java程序员的成长之路

    阅读本文大概需要 8.2 分钟. tips:虽然题目是写的Java程序员,但对其他语言的开发来说也会有借鉴作用. 本篇介绍的是大体思路,以及每个节点所需要学习的书籍内容,如果大家对详细的技术点有需要, ...

  4. git常用命令总结——你一定会用到的几个命令

    git入门看廖雪峰大神的教程即可,通俗易懂:      https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b806 ...

  5. 【MySQL】常用监控指标及监控方法

    对之前生产中使用过的MySQL数据库监控指标做个小结.  指标分类 指标名称 指标说明 性能类指标 QPS 数据库每秒处理的请求数量 TPS 数据库每秒处理的事务数量 并发数 数据库实例当前并行处理的 ...

  6. gcc编译参数详解概述

    gcc 编译器是经常使用的,可是,自己却没有针对它做过专门的研究,当遇到问题了,总结一下,算是对未来有个积累吧. 一 关于编译告警: 1 -w : 关闭所有警告,不建议使用 2 -W 开启素有gcc ...

  7. 哈尔特征Haar

    哈尔特征(Haar-like features) 是用于物体识别的一种数字图像特征.它们因为与哈尔小波转换 极为相似而得名,是第一种即时的人脸检测運算. 历史上,直接使用图像的强度(就是图像每一个像素 ...

  8. OS之进程管理---多线程模型和线程库(POSIX PTread)

    多线程简介 线程是CPU使用的基本单元,包括线程ID,程序计数器.寄存器组.各自的堆栈等,在相同线程组中,所有线程共享进程代码段,数据段和其他系统资源. 传统的的单线程模式是每一个进程只能单个控制线程 ...

  9. 必须要会的 50 个 React 面试题

    翻译:疯狂的技术宅 原文:www.edureka.co/blog/interv… 如果你是一位有抱负的前端程序员并准备面试,那么这篇文章很适合你.本文是你学习和面试 React 所需知识的完美指南. ...

  10. asp.net MVC 上传文件 System.Web.HttpException: 超过了最大请求长度

    APS.NET MVC 上传文件出现  System.Web.HttpException: 超过了最大请求长度 这个问题 原因是 默认最大上传文件大小为4096,而我提交的文件太大了. 解决方案:修改 ...