题目描述

  有标有数字为\(1\)~\(9\)的卡片各\(a_1,a_2\cdots a_9\)张,还有标有乘号的卡片\(m\)张。从中取出\(n\)张按任意顺序排列,取出两个乘号相邻和乘法在边界上的非法式子,剩下的都是合法式子。求所有合法式子的方案的值的和。两张数字相同的卡片是不同的,两张乘号也是不同的。答案模\({10}^9+7\)

  \(n\leq 1000,a_i\leq {10}^8,m\leq{10}^8\)

题解

  \(n^\underline{m}=n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)=A(n,m)\)即排列数

  我们先枚举哪些位置有乘号

  现在我们考虑把\(1,2,3,4\)四个数字填到\(\_\_\times\_\_\)这样子的算式中。假设\(m=2\)。把式子展开

\[\begin{align}
&~~~~~\overline{ab}\times\overline{cd}\\
&=(a\times10+b)\times(c\times10+d)\\
&=a\times c\times 10\times 10+a\times d\times 10\times 1+b\times c\times 1\times 10+b\times d\times 1\times 1\\
&=100ac+10ad+10bc+bd
\end{align}
\]

  我们还有另外\(23\)个式子呢

\[\overline{ab}\times\overline{dc}\\
\overline{ba}\times\overline{cd}\\
\overline{ba}\times\overline{dc}\\
\vdots
\]

  另外我们发现,\(ac\)和\(ad\)对答案的贡献都是相似的(因为除了乘积不同之外没有什么区别)我们考虑计算系数和出现次数

  系数会有\(10\times 10,10\times 1,1\times 10,1\times 1\),那么怎样计算出现次数呢?

  先钦定这两个数字放的位置(就是系数),剩下那些空位总共有两个,还剩下两个数没填,方案数就是\(2^\underline{2}=2\)

  最后还要乘上选择乘号的方案数\(2^\underline{1}=2\)

  于是总的贡献就是

\[(1\times 2+1\times 3+1\times 4+\cdots+4\times 3)\times(100+10+10+1)\times 2\times 2=???
\]

  现在我们来考虑更复杂的情况

  \(sum\)为所有数字卡片的个数和,\(g_{i,j}\)为前\(i\)个数字中选出\(j\)个代表数字的乘积的和,\(f_{i,j}\)为前\(i\)个空填了\(j\)个乘号的合法算式的系数和,\(s_i\)为这\(n\)个空中填入\(i\)个乘号的答案。

  这里只讲一下\(f\)的推导

\[\begin{align}
&~~~~~\overline{ab}\times \overline{cd}\\
&=100ac+10ad+10bc+bd\\
&=10(10ac+bc)+(10a+b)d\\
\end{align}
\]

  那么\(10ac+bc\)的系数就是\(\overline{ab}\times c\)的系数(前一个位置的系数),\(10a+b\)的系数就是到上一个乘号前一个位置的系数。所以我们可以枚举上一个乘号是哪个位置,然后转移

\[g_{i,j}=\sum_{k=0}^{a_i}g_{i-1,k-j}\times i^k\times \binom{j}{k}\times a_i^\underline{k}\\
f_{i,j}=f_{i-1,j}\times10+\sum_{k=1}^{i}f_{k,j-1}\\
s_i=g_{9,i+1}\times f_{n,i}\times {(sum-i-1)}^\underline{n-i-(i+1)}\times m^\underline{i}
\]

  排列组合什么的可以预处理或暴力算

  时间复杂度:\(O(n^2)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=1000000007;
int a[10];
ll g[10][1010];
ll f[1010][1010];
ll s[1010][1010];
ll aa[10][1010];
ll pa[10][1010];
ll cc[1010][1010];
ll am[1010];
ll geta(ll n,ll m)
{
ll s=1;
int i;
for(i=1;i<=m;i++)
s=s*(n-i+1)%p;
return s;
}
int main()
{
// freopen("c.in","r",stdin);
// freopen("c.out","w",stdout);
int n,m,sum=0;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=9;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
int j,k;
for(i=1;i<=9;i++)
{
pa[i][0]=1;
aa[i][0]=1;
for(j=1;j<=n;j++)
{
pa[i][j]=pa[i][j-1]*i%p;
aa[i][j]=aa[i][j-1]*(a[i]-j+1)%p;
}
}
for(i=0;i<=n;i++)
{
cc[i][0]=1;
for(j=1;j<=i;j++)
cc[i][j]=(cc[i-1][j]+cc[i-1][j-1])%p;
}
g[0][0]=1;
for(i=1;i<=9;i++)
for(j=0;j<=n;j++)
for(k=0;k<=j&&k<=a[i];k++)
g[i][j]=(g[i][j]+g[i-1][j-k]*pa[i][k]%p*cc[j][k]%p*aa[i][k]%p)%p;
for(i=1;i<=n;i++)
{
f[i][0]=(f[i-1][0]*10+1)%p;
s[i][0]=(s[i-1][0]+f[i][0])%p;
for(j=1;j<=n;j++)
{
f[i][j]=f[i-1][j]*10%p;
if(i>2)
f[i][j]=(f[i][j]+s[i-2][j-1])%p;
s[i][j]=(f[i][j]+s[i-1][j])%p;
}
}
am[0]=1;
for(i=1;i<=n;i++)
am[i]=am[i-1]*(m-i+1)%p;
ll ans=0;
for(i=0;i<=(n-1)/2&&i<=m;i++)
ans=(ans+g[9][i+1]*f[n][i]%p*geta(sum-i-1,n-2*i-1)%p*am[i]%p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY1591】卡片游戏 DP的更多相关文章

  1. 【sicily】卡片游戏

    卡片游戏  Time Limit: 1sec    Memory Limit:32MB Description 桌上有一叠牌,从第一张牌(即位于顶面的牌)开始从上往下依次编号为1~n.当至少还剩两张牌 ...

  2. Sicily 1931. 卡片游戏

    题目地址:1931. 卡片游戏 思路: 纯属数据结构中队列的应用,可以练练手. 具体代码如下: #include <iostream> #include <queue> usi ...

  3. 卡片游戏(hdu4550)贪心

    卡片游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Submi ...

  4. nyoj905 卡片游戏

    卡片游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述 小明最近宅在家里无聊,于是他发明了一种有趣的游戏,游戏道具是N张叠在一起的卡片,每张卡片上都有一个数字,数字 ...

  5. 1233: 传球游戏 [DP]

    1233: 传球游戏 [DP] 时间限制: 1 Sec 内存限制: 128 MB 提交: 4 解决: 3 统计 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做 ...

  6. NYOJ 905 卡片游戏

    卡片游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:1 描写叙述 小明近期宅在家里无聊.于是他发明了一种有趣的游戏.游戏道具是N张叠在一起的卡片,每张卡片上都有一个数字,数字 ...

  7. 游戏 DP

    游戏 DP [题意描述] 小喵喵喜欢玩 RPG 游戏.在这款游戏中,玩家有两个属性,攻击和防御,现在小喵喵的攻击和防御都是 1,接下来小喵喵会依次遇到 n 个事件.事件有两种. 1.小喵喵经过修炼,角 ...

  8. Java实现 LeetCode 822 翻转卡片游戏(暴力)

    822. 翻转卡片游戏 在桌子上有 N 张卡片,每张卡片的正面和背面都写着一个正数(正面与背面上的数有可能不一样). 我们可以先翻转任意张卡片,然后选择其中一张卡片. 如果选中的那张卡片背面的数字 X ...

  9. [LuoguP1005]矩阵取数游戏 (DP+高精度)

    题面 传送门:https://www.luogu.org/problemnew/show/P1005 Solution 我们可以先考虑贪心 我们每一次都选左右两边尽可能小的数,方便大的放在后面 听起来 ...

随机推荐

  1. mockjs使用

    /** * 使用mockjs来mock数据, 提供mock数据API接口 */ import Mock from 'mockjs' import data from './data.json' //注 ...

  2. Mysql乱码问题总结

    这两天研究了下Mysql的字符集编码和排序规则,有个很典型的问题就是乱码问题.所以小记一下. http://www.jianshu.com/p/4c6a27542df4 http://blog.csd ...

  3. Verilog语法遗漏点

    1 关于参数定义 Parameter:parameter只能定义在端口生命的前面,如 Input[whith:0] a; Parameter whith=4; 这样的参数定义出现在声明的后面会报错 2 ...

  4. IBM的淘汰之路

    BM曾经在计算领域独领风骚,但是90年被PC产业链上的微软.英特尔等厂商围殴,遭遇最严重的危机; 今天在云计算市场,IBM曾在遭遇同样的危机,这一次不知道它能否安然度过; IBM收购红帽转向混合云,是 ...

  5. 使用fiddlercore修改网页的返回内容

    最近研究了一下FiddlerCore,发现这是个非常强大的工具.可以用来采集网页.修改网页数据.开发页游外挂等等. 使用这个工具,需要掌握一定的html和http知识,官方网站上也有例子可以下载. 看 ...

  6. Echarts x轴文本内容太长的几种解决方案

    Echarts 标签中文本内容太长的时候怎么办 ? - 1对文本进行倾斜 在xAxis.axisLabe中修改rotate的值 xAxis: { data: ["衬衫11111", ...

  7. ocrosoft 程序设计提高期末复习问题M 递归求猴子吃桃

    http://acm.ocrosoft.com/problem.php?cid=1172&pid=12 题目描述 猴子吃桃问题.猴子第1天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个. ...

  8. 【转】Docker部署Tomcat及Web应用

    Docker部署Tomcat及Web应用 - Scofield_No1的博客 - CSDN博客https://blog.csdn.net/qq_32351227/article/details/786 ...

  9. [转帖]浅谈程序中的text段、data段和bss段

    作者:百问科技链接:https://zhuanlan.zhihu.com/p/28659560来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 一般情况,一个程序本质上都 ...

  10. Laravel技巧:使用load、with预加载 区别

    1.使用load $posts = Post::all(); $posts->load('user'); 2.使用with $posts = Post::with('user')->all ...