Codeforces Round #471 (Div. 2) F. Heaps(dp)
题意
给定一棵以 \(1\) 号点为根的树。若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆:
- 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\) 叉高度为 \(1\) 的堆。
- 若 \(m > 1\) ,则 \(p\) 需要有至少 \(k\) 个儿子满足在儿子处有一个 \(k\) 叉高度为 \(m − 1\) 的堆。
令 \(dp[p][k]\) 表示在 \(p\) 点 \(k\) 叉堆的最大高度,令 \(g[p][k]\) 为 \(p\) 子树内最大的 \(dp[v][k]\) 求 \(\displaystyle \sum_{i=1}^{n} \sum_{j=1}^{n} g[i][j]\) 。
\(n \le 3 ∗ 10^5\)
题解
如果固定一个 \(k\) ,然后直接暴力做 \(dp\) ,每次是 \(O(n ^ 2)\) 的。
但显然是没必要这么暴力的,因为我们发现对于任意 \(k > 1\) ,都存在 \(dp[p][k] \le \log_{k} n\) 。
所以我们可以考虑做对于这个 \(dp\) 值的 \(dp\) ,具体来说令 \(f[p][x]\) 为满足 \(dp[p][k] \le x\) 的最大的 \(k\) 。
不难发现这样总状态是 \(O(n \log n)\) 的,接下来我们只需要考虑如何转移这个 \(dp\) 了。
考虑枚举一个点 \(p\) ,然后枚举它当前的层数 \(x \le 20\) ,然后考虑从它所有儿子的 \(x-1\) 的状态转移过来。
这个点的 \(f\) 取值显然不会超过儿子总数,然后考虑从大到小枚举 \(f\) 的取值 \(k\) 然后判断 \(f[v][x - 1]\) ( \(v\) 是 \(u\) 的一个儿子)中第 \(k\) 大的取值是否 \(\ge k\) ,如果可以则能取这个值。
这是因为它有 \(k\) 个儿子都满足至少具有 \(k\) 叉树的条件,那么这个点也能满足 \(k\) 叉树的条件。
然后最后记得要考虑 \(k=1\) 的情况(直接找向下最长链),然后答案就是 \(\sum_{i} (dep_i +\sum_{j} (f[i][j] - 1))\) 。
复杂度就是 \(O(n \log n ) \times O(\log n) = O(n \log^2 n)\) 的(因为有排序)。
总结
如果对于 \(dp\) 状态很多,但是取值很小的题,可以考虑对于 \(dp\) 值进行转移,常常状态就可以压到很少。
代码
其实很好写qwq
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define pb push_back
using namespace std;
template<typename T> inline bool chkmin(T &a, T b) {return b < a ? a = b, 1 : 0;}
template<typename T> inline bool chkmax(T &a, T b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("F.in", "r", stdin);
freopen ("F.out", "w", stdout);
#endif
}
const int N = 3e5 + 1e3, Lim = 20;
vector<int> G[N];
int n, f[N][Lim + 1], g[N], len;
void Dp(int u, int fa) {
for (int v : G[u]) if (v != fa) Dp(v, u);
f[u][1] = n;
For (i, 2, Lim) {
len = 0; for (int v : G[u]) if (v != fa) g[++ len] = f[v][i - 1];
sort(g + 1, g + len + 1, greater<int>());
Fordown (k, len, 1) if (g[k] >= k) { f[u][i] = k; break; }
}
}
int dep[N];
void Dfs(int u, int fa) {
dep[u] = 1;
for (int v : G[u]) if (v != fa) {
Dfs(v, u);
chkmax(dep[u], dep[v] + 1);
For (i, 1, Lim)
chkmax(f[u][i], f[v][i]);
}
}
long long ans = 0;
int main () {
File();
n = read();
For (i, 1, n - 1) {
int u = read(), v = read();
G[u].pb(v); G[v].pb(u);
}
Dp(1, 0); Dfs(1, 0);
For (i, 1, n) {
ans += dep[i];
For (j, 1, Lim)
if (f[i][j]) ans += f[i][j] - 1;
}
printf ("%lld\n", ans);
return 0;
}
Codeforces Round #471 (Div. 2) F. Heaps(dp)的更多相关文章
- Codeforces Round #260 (Div. 2)C. Boredom(dp)
C. Boredom time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #658 (Div. 2) D. Unmerge(dp)
题目链接:https://codeforces.com/contest/1382/problem/D 题意 给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后 ...
- 【Codeforces】Codeforces Round #374 (Div. 2) -- C. Journey (DP)
C. Journey time limit per test3 seconds memory limit per test256 megabytes inputstandard input outpu ...
- Codeforces Round #652 (Div. 2) D. TediousLee(dp)
题目链接:https://codeforces.com/contest/1369/problem/D 题意 最初有一个结点,衍生规则如下: 如果结点 $u$ 没有子结点,添加 $1$ 个子结点 如果结 ...
- Codeforces Round #247 (Div. 2) C. k-Tree (dp)
题目链接 自己的dp, 不是很好,这道dp题是 完全自己做出来的,完全没看题解,还是有点进步,虽然这个dp题比较简单. 题意:一个k叉树, 每一个对应权值1-k, 问最后相加权值为n, 且最大值至少为 ...
- Codeforces Round #165 (Div. 1) Greenhouse Effect(DP)
Greenhouse Effect time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #119 (Div. 2) Cut Ribbon(DP)
Cut Ribbon time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #368 (Div. 2) B. Bakery (模拟)
Bakery 题目链接: http://codeforces.com/contest/707/problem/B Description Masha wants to open her own bak ...
- Codeforces Round #587 (Div. 3) F. Wi-Fi(单调队列优化DP)
题目:https://codeforces.com/contest/1216/problem/F 题意:一排有n个位置,我要让所有点都能联网,我有两种方式联网,第一种,我直接让当前点联网,花费为i,第 ...
随机推荐
- 结对项目——图形界面实现与dll动态链接
先来一发软件截图~~~ 生成题目的界面 测评界面 第三块本来准备做一个文件历史记录的界面,但是由于时间不够,暂时还没做完. 图形界面的设计与实现 由于对传统的对话框风格不太满意,所以这次作业的图形界面 ...
- Linux 典型应用之Mysql
Mysql 的安装及连接 删除默认安装的 mariadb数据库 yum remove mariadb-libs.x86_64 mysql源下载的网址 https://dev.mysql.com/dow ...
- Nginx负载均衡各种配置方式
Nginx负载均衡 - 小刚qq - 博客园http://www.cnblogs.com/xiaogangqq123/archive/2011/03/04/1971002.html Module ng ...
- Tomcat Cluster
Tomcat群集配置| Tomcat集群| MuleSofthttps://www.mulesoft.com/tcat/tomcat-cluster Tomcat Clustering - A Ste ...
- CentOS7安装Jenkins,使用war方式直接运行或用yum方式安装运行
jenkins最简单的安装方式呢,就是直接去官网下载jenkins的war包,把war丢到tomcat里运行,直接就能打开了. Jenkins官网:https://jenkins.io/downloa ...
- Flutter常用插件
Dio Dio是一个强大的Dart Http请求库,支持Restful API.FormData.拦截器.请求取消等操作.视频中将全面学习和使用Dio的操作. Flutter_swiper swipe ...
- re正则表达式-1
匹配/查找/替换/分割函数: import re re.match('aa','aabbcc') 返回对象中span为开始位置和结束位置 re.match('aa','bbaacc') #返回值为No ...
- Nginx安装- CentOS7
1.确认是否具备安装环境 g++ -v 如果不打印则不具备. 解决办法:联网执行如下命令 yum install gcc yum install gcc-c++ 2.需要材料 pcre-8.37.t ...
- varnish4 配置文件整理
vim default.vcl # 使用varnish版本4的格式. vcl 4.0; # 加载后端轮询模块 import directors; #######################健康检查 ...
- 莫烦theano学习自修第六天【回归】
1. 代码实现 from __future__ import print_function import theano import theano.tensor as T import numpy a ...