poj1155 依赖背包
/*
依赖背包
dp[i][j]表示i结点为根的树选择j个用户时的最大剩余费用
即背包容量是j,价值是最大费用
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define maxn 3050
struct Edge{int to,nxt,w;}edge[maxn<<];
int n,m,k,head[maxn],tot,num[maxn],dp[maxn][maxn];
void init(){
memset(head,-,sizeof head);
tot=;
}
void addedge(int u,int v,int w){
edge[tot].to=v;edge[tot].w=w;edge[tot].nxt=head[u];
head[u]=tot++;
}
void dfs(int u,int pre){
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v==pre)continue;
dfs(v,u);
num[u]+=num[v];
} for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v==pre)continue;
for(int j=num[u];j>=;j--)
for(int t=;t<=num[v];t++)
dp[u][j]=max(dp[u][j],dp[u][j-t]+dp[v][t]-edge[i].w);
}
//printf("%d %d\n",u,dp[u][1]);
}
int main(){
int v,w;
while(cin>>n>>m){
init();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)dp[i][j]=-0x3f3f3f3f;
for(int i=;i<=n-m;i++){//
cin>>k;
while(k--){
cin>>v>>w;
addedge(i,v,w);
addedge(v,i,w);
num[i]=;
}
}
for(int i=n-m+;i<=n;i++)
num[i]=,cin>>dp[i][];
dfs(,);
for(int j=m;j>=;j--)
if(dp[][j]>=){
printf("%d\n",j);
break;
}
}
}
poj1155 依赖背包的更多相关文章
- 依赖背包变形(经典)——poj1155
这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可 每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][ ...
- 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)
The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...
- hdu 1561 The more, The Better (依赖背包 树形dp)
题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...
- hdoj1010Starship Troopers (树dp,依赖背包)
称号:hdoj1010Starship Troopers 题意:有一个军队n个人要占据m个城市,每一个城市有cap的驻扎兵力和val的珠宝,并且这m个城市的占率先后具有依赖关系,军队的每一个人能够打败 ...
- 依赖背包——cf855C好题
比较裸的依赖背包,但是想状态还是想了好久 转移时由于边界问题,虽然可以倒序转移,但当容量为0|1的时候,由于有初始值的存在 很难再原dp数组上进行修改,所以额外用tmp数组来保存修改后的值 #incl ...
- cf581F 依赖背包+临时数组 好题
这题得加个临时数组才能做.. /* 给定一棵树,树节点可以染黑白,要求叶子节点黑白平分 称连接黑白点的边为杂边,求使得杂边最少的染色方 那么设dp[i][j][0|1]表示i子树中有j个叶子节点,i染 ...
- BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)
BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...
- BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)
BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...
- hdu1561 树形dp,依赖背包
多重背包是某个物品可以选择多次,要把对物品数的枚举放在对w枚举外面 分组背包是某组的物品只能选一个,要把对每组物品的枚举放在对w枚举内侧 依赖背包是多层的分组背包,利用树形结构建立依赖关系,每个结点都 ...
随机推荐
- centos 6.8下载地址
centos6.8校验码查询网站:https://wiki.centos.org/zh-tw/Manuals/ReleaseNotes/CentOS6.8 CentOS 6.8 64位DVD 种子下载 ...
- CSL 的字符串(单调栈)
题目链接:https://ac.nowcoder.com/acm/contest/551/D 题目大意: 题目描述 CSL 以前不会字符串算法,经过一年的训练,他还是不会……于是他打算向你求助. 给定 ...
- Microsoft SQL - 数据类型
数据类型(Data Type) 数据类型 整数类型 Tinyint 8位无符号整数 Smallint 16位带符号整数‘ Int 32位带符号整数 Bigint 64位带符号整数 实数类型 Decim ...
- redis-LinkedList
1.redis-LinkedList[重点] Java List : 数组ArrayList 链表LinkedList 为什么redis选取了链表? Redis操作中,最多的操作是进行元素的增删 使 ...
- python的扩展包requests的高级用法
Python 标准库中的 urllib2 模块提供了你所需要的大多数 HTTP 功能,但是它的 API 太渣了.它是为另一个时代.另一个互联网所创建的.它需要巨量的工作,甚至包括各种方法覆盖,来完成最 ...
- Hadoop配置文件参数详解
core-site.xml <configuration> <property> <name>hadoop.tmp.dir</name> <val ...
- hadoop-1.2.1集群搭建
继续上一篇:http://www.cnblogs.com/CoolJayson/p/7430654.html 首先需要安装上台虚拟机, 分别为: master, salve1, slave2 1.复制 ...
- 【转】MySQL— pymysql and SQLAlchemy
[转]MySQL— pymysql and SQLAlchemy 目录 一.pymysql 二.SQLAlchemy 一.pymysql pymsql是Python中操作MySQL的模块,其使用方法和 ...
- 看完此文还不懂NB-IoT,你就过来掐死我吧...
看完此文还不懂NB-IoT,你就过来掐死我吧....... 1 1G-2G-3G-4G-5G 不解释,看图,看看NB-IoT在哪里? 2 NB-IoT标准化历程 3GPP NB-IoT的标准化始于20 ...
- 设计模式C++学习笔记之十六(Observer观察者模式)
16.1.解释 概念:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新. main(), IObservable,被观察者接口 CHanFei ...