CF1097F Alex and a TV Show
题目地址:CF1097F Alex and a TV Show
bitset+莫比乌斯反演(个人第一道莫比乌斯反演题)
由于只关心出现次数的奇偶性,显然用bitset最合适
但我们并不直接在bitset中存 \(x\) 的个数,而是存 \(x\) 的约数出现的个数
对于操作1,先预处理然后直接赋值
对于操作2,直接 \(xor\)
对于操作3,直接 \(and\)
对于操作4,用莫比乌斯反演处理一下:
设 \(f(x)\) 为 \(x\) 出现的次数, \(g(x)\) 为 \(x\) 作为约数出现的次数
显然有:\(g(x)=\sum_{x|d}\ f(d)\)
因此有:\(f(x)=\sum_{x|d}\ \mu(\frac{d}{x})\ g(x)\)
由于只关心奇偶性, \(\mu(x)=-1\) 相当于 \(\mu(x)=1\) ,因此只需要把 \(\mu(x)=0\) 的找到即可
代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 100006, M = 7006;
bitset<M> a[N], p[M], miu, Miu[M];
void prework(int n) {
miu.set();
for (int i = 2; i * i <= n; i++)
for (int j = 1; i * i * j <= n; j++)
miu[i*i*j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; i * j <= n; j++) {
p[i*j][i] = 1;
Miu[i][i*j] = miu[j];
}
}
int main() {
prework(7000);
int n, q;
cin >> n >> q;
while (q--) {
int o;
scanf("%d", &o);
if (o == 1) {
int x, v;
scanf("%d %d", &x, &v);
a[x] = p[v];
} else if (o == 2) {
int x, y, z;
scanf("%d %d %d", &x ,&y, &z);
a[x] = a[y] ^ a[z];
} else if (o == 3) {
int x, y, z;
scanf("%d %d %d", &x, &y, &z);
a[x] = a[y] & a[z];
} else {
int x, v;
scanf("%d %d", &x, &v);
printf("%d", (a[x] & Miu[v]).count() & 1);
}
}
return 0;
}
CF1097F Alex and a TV Show的更多相关文章
- CF1097F Alex and a TV Show 莫比乌斯反演、bitset
传送门 发现自己对mobius反演的理解比较浅显-- 首先我们只需要维护每一个数的出现次数\(\mod 2\)的值,那么实际上我们只需要使用\(bitset\)进行维护,每一次加入一个数将其对应次数异 ...
- 【CF1097F】Alex and a TV Show(bitset)
[CF1097F]Alex and a TV Show(bitset) 题面 洛谷 CF 题解 首先模\(2\)意义下用\(bitset\)很明显了. 那么问题在于怎么处理那个\(gcd\)操作. 然 ...
- 【CF1097F】Alex and a TV Show
[CF1097F]Alex and a TV Show 题面 洛谷 题解 我们对于某个集合中的每个\(i\),令\(f(i)\)表示\(i\)作为约数出现次数的奇偶性. 因为只要因为奇偶性只有\(0, ...
- 【Codeforces 1097F】Alex and a TV Show(bitset & 莫比乌斯反演)
Description 你需要维护 \(n\) 个可重集,并执行 \(m\) 次操作: 1 x v:\(X\leftarrow \{v\}\): 2 x y z:\(X\leftarrow Y \cu ...
- 题解 CF1097F 【Alex and a TV Show】
妙妙题-- 这道题这要求%2的个数,肯定有什么性质 于是我们想到了用\(bitset\)来处理 由于三操作有\(gcd\),于是我们又想到用反演来解决 我们回忆一下反演的柿子 设\(f(x)\)为x出 ...
- CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)
Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!&qu ...
- Codeforces 1097 Alex and a TV Show
传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...
- Codeforces 1097F Alex and a TV Show (莫比乌斯反演)
题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...
- Codeforces 1097F. Alex and a TV Show
传送门 由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$ 容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的... 一开始容易想到对每个集 ...
随机推荐
- File的创建
package cn.lijun.demo3; import java.io.File; import java.io.IOException; // 创建文件功能 如果文件已经存在 不再创建 pub ...
- iptables之NAT端口转发设置
背景:服务器A:103.110.114.8/192.168.1.8,有外网ip,是IDC的一台服务器服务器B:192.168.1.150,没有外网ip,A服务器是它的宿主机,能相互ping通服务器C: ...
- 网络编程基础【day10】:进程与线程介绍(一 )
本节内容 1.概述 2.什么是进程? 3.什么是线程? 4.什么是携程? 5.存在的疑问 6.总结 一.概述 我们知道,所有的指令的操作都是有CPU来负责的,cpu是来负责运算的.OS(操作系统) 调 ...
- java io系列07之 FileInputStream和FileOutputStream
本章介绍FileInputStream 和 FileOutputStream 转载请注明出处:http://www.cnblogs.com/skywang12345/p/io_07.html File ...
- 7.桥接模式(Bridge Pattern)
动机(Motivate): 在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化,那么如何应对这种“多维度的变化”?如何利用面向对象的技术来使得该类型能够轻松的沿着多个方向进行变化, ...
- 031、none和host网络的适用场景(2019-02-18 周一)
参考https://www.cnblogs.com/CloudMan6/p/7053617.html 本节开始,会学习docker的几种原生网络,以及如何创建自定义网络.然后探究容器之间如何通信, ...
- 面向对象(Object Orientation Programming)
Three characteristic of object orientation: Encapsulation: capturing data and keeping it safely and ...
- 【转载】RPG颜色参考表
https://blog.csdn.net/a949308398/article/details/17013087
- Win10 64位连接LJM1005打印机局域网访问
除了网上常见的开Guest用户之类需要额外三个设置 (1)安装LJM1005驱动LJM1005_Full_Solution (2)设置打印机共享和安全中的everyone全部勾选(解决能看到打印机无法 ...
- 一次针对多台服务器交互式主机命令采集Python脚本编写
[环境介绍] 系统环境:Linux + Python 2.7.10(监控主机) [背景描述] 需求:每次节假日或者重要时间时,需要对数据库主机信息进行检查,比如主机空间使用率之类.有时候需要执 ...