bzoj2553 禁忌
题意
给出一个\(n\)个字符串的字典。对于一个字符串,他的贡献是这个字符串中最多的在字典中出现的不重叠子串的数量。
然后问一个长度为\(len\)的,字符集为前\(alphabet\)个字符的字符串的贡献期望是多少。
思路
首先想如果这个长度为\(len\)的字符串已经给出了。应该怎么算贡献。
只要贪心的在\(AC\)自动机上走,如果走到了字典中字符串的结尾,就回到根节点,然后重新走。
现在没有给出这个字符串,在\(AC\)自动机上表现为每个点的每个儿子都有\(\frac{1}{alphabet}\)的概率存在。
这个题要求求期望,根据期望的线性性。只要求出每个字符串被经过的概率之和\(\times\)贡献,然后加起来就行了。因为每个字符串的贡献都是\(1\),所以只要将他们的概率之和求出来就行了。
然后考虑如何求出来每个字符串被经过的概率。
根据上面的贪心思路。我们可以用\(f[k][i]\)表示走了\(k\)步,走到\(j\)的概率。只要用\(f[k-1][fa[i]]\times \frac{1}{alphabet}\)就行了。
因为\(len\)到了\(10 ^ 9\),所以考虑矩阵快速幂优化,我们可以把从每个点走到另一个点的概率用一个\(n\times n\)矩阵来表示。然后将这个矩阵自乘\(len\)遍就行了。
然后考虑这个矩阵应该怎么得到。首先要在矩阵上新建一个统计答案的点。只要在\(AC\)自动机上\(bfs\)一遍,如果儿子被打过结束标记了,那么就将当前点走到新建点和根节点的概率\(+\frac{1}{alphabet}\).否则就将当前节点走到孩子节点的概率\(+\frac{1}{alphabet}\)。
然后矩阵快速幂就行了。
代码
/*
* @Author: wxyww
* @Date: 2019-01-31 08:45:43
* @Last Modified time: 2019-01-31 10:03:47
*/
#include<cstring>
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<ctime>
#include<bitset>
using namespace std;
typedef long long ll;
typedef long double ld;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
queue<int>q;
struct Mat {
ld a[100][100];
int n;
Mat() {
n = 0;
memset(a,0,sizeof(a));
}
Mat(int x) {
n = x;
for(int i = 0;i <= n;++i) a[i][i] = 1;
}
}C;
char s[20];
ld tmp;
int trie[100][27],tot,bz[400];
void ins() {
int len = strlen(s + 1);
int now = 0;
for(int i = 1;i <= len;++i) {
int x = s[i] - 'a';
if(!trie[now][x]) trie[now][x] = ++tot;
now = trie[now][x];
}
bz[now] = 1;
}
int fail[400],vis[400];
int alp;
void build() {
for(int i = 0;i < alp;++i) if(trie[0][i]) q.push(trie[0][i]);
while(!q.empty()) {
int now = q.front();q.pop();
for(int i = 0;i < alp;++i) {
if(trie[now][i]) fail[trie[now][i]] = trie[fail[now]][i],q.push(trie[now][i]);
else trie[now][i] = trie[fail[now]][i];
}
}
}
void bfs() {
while(!q.empty()) q.pop();
q.push(0);vis[0] = 1;
while(!q.empty()) {
int now = q.front();q.pop();
for(int i = 0;i < alp;++i) {
if(!vis[trie[now][i]]) vis[trie[now][i]] = 1,q.push(trie[now][i]);
if(bz[trie[now][i]]) C.a[now][0] += tmp, C.a[now][tot] += tmp;
else C.a[now][trie[now][i]] += tmp;
}
}
}
Mat operator * (Mat x,Mat y) {
int n = x.n;
Mat ret;
ret.n = n;
for(int k = 0;k <= n;++k) {
for(int i = 0;i <= n;++i) {
for(int j = 0;j <= n;++j) {
ret.a[i][j] += x.a[i][k] * y.a[k][j];
}
}
}
return ret;
}
Mat operator ^ (Mat x,int y) {
int n = x.n;
Mat ret(n);
for(;y;y >>= 1,x = x * x) {
if(y & 1) ret = ret * x;
}
return ret;
}
int main() {
int n = read(),len = read();
cin>>alp;
tmp = (ld)1 / (ld)alp;
for(int i = 1;i <= n;++i) {
scanf("%s",s + 1);
ins();
}
build();
++tot;
bfs();
C.n = tot;
C.a[tot][tot] = 1;
C = C ^ len;
printf("%.7Lf",C.a[0][tot]);
return 0;
}
bzoj2553 禁忌的更多相关文章
- BZOJ2553 [BeiJing2011]禁忌 AC自动机 矩阵
原文链接http://www.cnblogs.com/zhouzhendong/p/8196279.html 题目传送门 - BZOJ2553 题意概括 引用一下lych大佬的: 在字母只有前alph ...
- 【BZOJ2553】[BeiJing2011]禁忌 AC自动机+期望DP+矩阵乘法
[BZOJ2553][BeiJing2011]禁忌 Description Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平. ...
- BZOJ2553: [BeiJing2011]禁忌
2553: [BeiJing2011]禁忌 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 203 Solved: ...
- BZOJ2553[BeiJing2011]禁忌——AC自动机+概率DP+矩阵乘法
题目描述 Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平.而后,Koishi恢复了读心的能力…… 如今,在John已经成为传 ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ2553 [BeiJing2011]禁忌 【AC自动机 + dp + 矩乘优化】
题目链接 BZOJ2553 题解 话说在前,此题卡精度,最好开long double 先建\(AC\)自动机 求期望,逆着求,设\(f[i][j]\)为长度为\(i\)的串,当前匹配AC自动机\(j\ ...
- 【bzoj2553】[BeiJing2011]禁忌
2553: [BeiJing2011]禁忌 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 595 Solved: ...
- [BZOJ2553][BeiJing2011]禁忌 dp+AC自动机+矩阵快速幂
2553: [BeiJing2011]禁忌 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1206 Solved ...
- bzoj2553【beijing2011】禁忌
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2553 sol :puts("nan"); (逃~ ac自动机+矩阵快速幂 ...
随机推荐
- C# Note15:设置Window图标的正确方式
Windows Presentation Foundation(WPF)独立应用程序有两种类型的图标: 一个程序集(assembly) 图标,通过在应用程序的项目构建文件中使用<Applicat ...
- Django Rest framework 框架
一.开发模式: 1. 普通开发方式(前后端放在一起写) 2. 前后端分离(前后台通过ajaxo交互) 后端(django rest framework写的) <----ajaxo---> ...
- Android——MaterialDesign之四 FloatingActionButton、Snackbar、CoordinaterLayout
FloatingActionButton 悬浮按钮,默认colorAccent来作为按钮的颜色 <android.support.design.widget.FloatingActionButt ...
- nginx反向代理proxy_pass的问题
起因:今天企业部署一个项目,用的nginx做的反向代理,配置如下: 测试结果令人失望,IP:端口 能访问项目,域名:端口 也能访问 ,但是 域名/接口名 访问失败 ################## ...
- C#中List<T>排序
在面向对象开发过程中我们经常将一组对象放到一个特定集合中,此时我们通常使用泛型集合来存放,常见的如:List.Dictionary等.在使用这些泛型集合时我们有时需要对其进行排序,下面我们就一起学习下 ...
- 莫烦keras学习自修第三天【回归问题】
1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ import numpy as np # 这句话不知道是什么意思 np.random.seed ...
- eclipse中将Java项目转换为JavaWeb项目
eclipse导入一些war项目后,会以java项目形式存在,因此我们需要将java项目转换成web项目,不然项目也许会报错. 1.右键已经导入的项目,选择properties. 2.选中projec ...
- sun.misc.BASE64Encoder----》找不到jar包的解决方法
1.右键项目->属性->java bulid path->jre System Library->access rules->resolution选择accessible ...
- Linux命令替换字符串
:%s/str1/str2/ 用str2替换str1
- django---一对多和多对多字段的操作训练
建表准备: django项目models.py建表 from django.db import models class Myclass(models.Model): cname = models.C ...