FCM算法的matlab程序

在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度。

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1.采用iris数据库

iris_data.txt

5.1    3.5    1.4    0.2
4.9 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 1.4 0.1
4.3 1.1 0.1
5.8 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
1.6 0.2
3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.2
3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.6 1.4 0.1
4.4 1.3 0.2
5.1 3.4 1.5 0.2
3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
3.3 1.4 0.2
3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
3.5
5.9 4.2 1.5
2.2
6.1 2.9 4.7 1.4
5.6 2.9 3.6 1.3
6.7 3.1 4.4 1.4
5.6 4.5 1.5
5.8 2.7 4.1
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 4.4 1.4
6.8 2.8 4.8 1.4
6.7 1.7
2.9 4.5 1.5
5.7 2.6 3.5
5.5 2.4 3.8 1.1
5.5 2.4 3.7
5.8 2.7 3.9 1.2
2.7 5.1 1.6
5.4 4.5 1.5
3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 4.1 1.3
5.5 2.5 1.3
5.5 2.6 4.4 1.2
6.1 4.6 1.4
5.8 2.6 1.2
2.3 3.3
5.6 2.7 4.2 1.3
5.7 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 1.1
5.7 2.8 4.1 1.3
6.3 3.3 2.5
5.8 2.7 5.1 1.9
7.1 5.9 2.1
6.3 2.9 5.6 1.8
6.5 5.8 2.2
7.6 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1
6.4 2.7 5.3 1.9
6.8 5.5 2.1
5.7 2.5
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
2.2 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9
7.7 2.8 6.7
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 1.8
6.2 2.8 4.8 1.8
6.1 4.9 1.8
6.4 2.8 5.6 2.1
7.2 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 5.2 2.3
6.3 2.5 1.9
6.5 5.2
6.2 3.4 5.4 2.3
5.9 5.1 1.8

iris_id.txt


2.matlab源程序

My_FCM.m

function label_1=My_FCM(K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
max_iter=100; %最大迭代次数
fitness=zeros(max_iter,1);
data=dlmread('E:\www.cnblogs.comkailugaji\data\iris\iris_data.txt');
%----------------------------------------------------------------------------------------------------
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化模糊隶属度矩阵
responsivity=rand(X_num,K); %初始化模糊隶属度矩阵,X_num*K
temp=sum(responsivity,2); %把responsivity每一行加起来,把K类加起来,N*1的矩阵
responsivity=responsivity./(temp*ones(1,K)); %保证每行(每类)加起来为1
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:max_iter
%更新聚类中心K*X_dim
miu_up=(responsivity'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum(responsivity.^(alpha)))'*ones(1,X_dim));
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%目标函数值
fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
%更新隶属度矩阵X_num*K
R_up=distant.^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity=R_up./(sum(R_up,2)*ones(1,K));
%[responsivity,para_miu,fitness(t)]=FuzzyCM(X,responsivity,K,alpha);
if t>1 %改成while不行
if abs(fitness(t)-fitness(t-1))<eps
break;
end
end
end
%iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);

succeed.m

function accuracy=succeed(K,id)
%输入K:聚的类,id:训练后的聚类结果,N*1的矩阵
N=size(id,1); %样本个数
p=perms(1:K); %全排列矩阵
p_col=size(p,1); %全排列的行数
new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col
num=zeros(1,p_col); %与真实聚类结果一样的个数
real_label=dlmread('E:\www.cnblogs.comkailugaji\data\iris\iris_id.txt');
%将训练结果全排列为N*p_col的矩阵,每一列为一种可能性
for i=1:N
for j=1:p_col
for k=1:K
if id(i)==k
new_label(i,j)=p(j,k)-1; %加一减一看情况
end
end
end
end
%与真实结果比对,计算精确度
for j=1:p_col
for i=1:N
if new_label(i,j)==real_label(i)
num(j)=num(j)+1;
end
end
end
accuracy=max(num)/N;

Eg_FCM.m

function ave_acc_FCM=Eg_FCM(K,max_iter)
%输入K:聚的类,max_iter是最大迭代次数
%输出ave_acc_FCM:迭代max_iter次之后的平均准确度
s=0;
for i=1:max_iter
label_1=My_FCM(K);
accuracy=succeed(K,label_1);
s=s+accuracy;
end
ave_acc_FCM=s/max_iter;

3.结果

>> ave_acc_FCM=Eg_FCM(3,50)
ave_acc_FCM =
0.888666666666667

FCM算法的matlab程序的更多相关文章

  1. FCM算法的matlab程序2

    FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...

  2. FCM算法的matlab程序(初步)

    FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  3. KFCM算法的matlab程序(用FCM初始化聚类中心)

    KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...

  4. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  5. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  6. KFCM算法的matlab程序

    KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...

  7. K-means算法的matlab程序

    K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...

  8. K-means算法的matlab程序(初步)

    K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...

  9. ISODATA聚类算法的matlab程序

    ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...

随机推荐

  1. iOS网络请求-AFNetworking源码解析

    趁着端午节日,自己没有什么过多的安排,准备花4-5天左右,针对网络请求源码AFNetworking和YTKNetwork进行解析以及这两年多iOS实际开发经验(其实YTKNetwork也是对AFNet ...

  2. Opencv-python画图基础知识

    相关函数介绍 1. Point 该数据结构表示了由其图像坐标 和 指定的2D点.可定义为: Point pt; pt.x = 10; pt.y = 8; 或者 Point pt = Point(10, ...

  3. 从零开始学安全(二十五)●用nmap做端口扫描

    以上是常用的端口扫描 -T 用法 每个级别发包时间  当没有使用T 时默认的使用T3级别发包 半开扫描  先探测主机是否存活 再用-sS  扫描端口   容易造成syn 包攻击 就是利用僵尸主机  进 ...

  4. 3. 原子变量-CAS算法

    1. 是什么 ? 2. CAS算法模拟 package com.gf.demo03; public class TestCompareAndSwap { public static void main ...

  5. python中的eval函数

    eval() 函数十分强大 -- 将字符串 当成 有效的表达式 来求值 并 返回计算结果 In [1]: eval("1 + 3") Out[1]: 4 In [2]: eval( ...

  6. Tri Tiling(hdu1143)

    Tri Tiling Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. 如何用ftp上传静态网站到虚拟空间

    ftp是一种网络传输协议,你要上传网站到空间首先你要安装一个FTP软件,你申请的空间有一个网址.账号.密码之类的,你打开FTP输入这些链接就可以准备上传网站了,软件打开有一个本地界面,还有一个空间界面 ...

  8. SqlHelper模板

    在实际开发中,我们不会直接使用拼写SQL语句的方法进行数据库操作,而是使用参数化的方法进行数据库操作,这样做的好处很多,不仅提高了程序的健壮性,同时也避免的SQL注入的问题.在这里,笔者为初学者提供一 ...

  9. 二进制安装 kubernetes 1.12(一) - 安装 ETCD

    软件环境 软件 版本 操作系统 CentOS 7.4 Docker 18-ce Kubernetes 1.12 服务器角色 角色 IP 组件 k8s-master 192.168.0.205 kube ...

  10. layui 自定义表单验证的几个实例

    *注:使用本方法请先引入layui依赖的layu.js和layui.css 1.html <input type="text" name="costbudget&q ...