题解

我深思熟虑许久才算是明白个大概的计数问题吧

先是转化成一个矩形,列一条直线y = x,y = x - (m + 1)我们从(0,0)走到(n + m + 1,m + 1)就是答案

因为我们起始相当于第一行缺一个0,然后有m+1种转移的方案,每次在距左边界j的地方某个点向上走表示转移到缺j - 1,向右走一步走到了缺j,再走一步走到缺j + 1....

我们把向上走当做-1,向右走当做+1,我们可以建立一个新的模型

就是起点为\((0,0)\)终点为\((2 * n + m + 1,m + 1)\),每次可以走到\((x + 1,y + 1)\)或者走到\((x + 1,y - 1)\)

不能碰到\(y = -1\)或者\(y = m + 2\)

我们要用总方案去掉碰到\(y = -1\)和碰到\(y = m + 2\)再加上两个都碰到的

我们对于碰到\(y = -1\)我们就关于让终点关于\(y = -1\)对称,求原点到那里的方案数,因为每条不合法的路径对应一条到翻折点的路径在和\(y = -1\)第最后一个交点处后的路径沿\(y = -1\)翻折即可

我们把两个都碰到的拆成最后一个碰到的是\(y = -1\)记为A和第最后一个碰到的是\(y = m + 2\)记为B

举个例子

我们对于\(y = -1\)统计第最后碰到的是A

对于一条需要被加上的路径(也就是影响需要被抵消的路径)

经历的顺序记为

ABABA

那么我们

去掉了后缀为AB 和A 的

再加上后缀为AB 和 ABA的

再减去后缀为ABA 和 ABAB的

直到不能计算了为止

怎么计算后缀为AB 和 ABA的两种情况呢

我们把\(y = m + 2\)对着\(y = -1\)再次翻折,把(n * 2 + m + 1,m + 1)这个点对着\(y = -1\)翻折后,再次对着\(y = -m - 4\)翻折

计算(0,0)到目标点的答案就是我们想要的

最后我们只要把直线不断翻折直到不能达成为止

我们再对\(y = m + 1\)做相同的操作即可

这道题要是考场上给我,我也只能写60分暴力滚粗了……

代码

#include <bits/stdc++.h>
#define enter putchar('\n')
#define space putchar(' ')
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define eps 1e-8
#define MAXN 4000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned long long u64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fac[MAXN],invfac[MAXN],inv[MAXN],N,M,ans,x;
int C(int n,int m) {
if(n < m) return 0;
return mul(fac[n],mul(invfac[m],invfac[n - m]));
}
int F(int n,int m) {
return C(n,(n - m) / 2);
}
void Calc(int y,int y_1,int y_2) {
while(1) {
y = 2 * y_1 - y;
y_2 = 2 * y_1 - y_2;
if(abs(y) > x) break;
ans = inc(ans,MOD - F(x,y));
y = 2 * y_2 - y;
y_1 = 2 * y_2 - y_1;
if(abs(y) > x) break;
ans = inc(ans,F(x,y));
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(N);read(M);
inv[1] = 1;
for(int i = 2 ; i <= 4000000 ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i);
fac[0] = invfac[0] = 1;
for(int i = 1 ; i <= 4000000 ; ++i) {
fac[i] = mul(fac[i - 1],i);
invfac[i] = mul(invfac[i - 1],inv[i]);
}
x = 2 * N + M + 1;
ans = inc(ans,F(x,M + 1));
Calc(M + 1,-1,M + 2);Calc(M + 1,M + 2,-1);
out(ans);enter;
}

【LOJ】#2109. 「JLOI2015」骗我呢的更多相关文章

  1. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  2. @loj - 2106@ 「JLOI2015」有意义的字符串

    目录 @description@ @solution@ @accepted code@ @details@ @description@ B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣 ...

  3. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  4. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  5. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  6. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  9. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

随机推荐

  1. WebService 检测到有潜在危险的 Request.Form 值

    在web.config 的 <system.web> <pages validateRequest="false" /> <httpRuntime r ...

  2. 如何整合Office Web Apps至自己开发的系统(二)

    WOPI项目的创建 首先用vs2012创建一个mvc4的程序.如图: 从上一篇我们可以知道,WOPI通讯主要通过两个服务: 一个是CheckFileInfo服务, 一个是GetFile服务. 所以下面 ...

  3. P3959 宝藏

    P3959 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nn 个深埋在地下的宝藏屋, 也给出了这 nn 个宝藏屋之间可供开发的 mm 条道路和它们的长度. 小明决心亲自前往挖掘 ...

  4. Spark记录-spark报错Unable to load native-hadoop library for your platform

    解决方案一: #cp $HADOOP_HOME/lib/native/libhadoop.so  $JAVA_HOME/jre/lib/amd64 #源码编译snappy---./configure  ...

  5. JS模块化写法(转)

    一.原始写法 模块就是实现特定功能的一组方法. 只要把不同的函数(以及记录状态的变量)简单地放在一起,就算是一个模块. function m1(){ //... } function m2(){ // ...

  6. Myeclipse/STS 首次在本地部署配置一个Spring MVC 项目 (十二)

    1. 在本地新创建一个文件夹 ,做为项目工作空间; 2. 用 Myeclipse 或 STS 进入该文件夹,该文件夹就成为项目的工作空间: 3. 就要进 窗口-首选项,配置: 环境默认编码: 1> ...

  7. MFS - MooseFS 文件系统

    MFSMooseFS 文件系统 可以实现RAID 功能:节约成本 实现在线扩展:是一种半分布式文件系统. 一.MFS文件系统的组成 1.mfsmaster 元数据服务器. 在整个体系中负责管理管理文件 ...

  8. CTSC/APIO2018滚粗记

    CTSC/APIO2018滚粗记 前言 从\(5.5\)晚上的火车到\(5.14\)早上的高铁 \(10\)天的时间真的过去的很快. 眨眼间,就到了今天晚上的颁奖. 至于结果如何,反而并不是那么重要了 ...

  9. Strange Queries(莫队)

    题目 You are given an array with n integers a1, a2, ..., an, and q queries to answer. Each query consi ...

  10. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...