【Java】 大话数据结构(11) 查找算法(2)(二叉排序树/二叉搜索树)
本文根据《大话数据结构》一书,实现了Java版的二叉排序树/二叉搜索树。
二叉排序树介绍
在上篇博客中,顺序表的插入和删除效率还可以,但查找效率很低;而有序线性表中,可以使用折半、插值、斐波那契等查找方法来实现,但因为要保持有序,其插入和删除操作很耗费时间。
二叉排序树(Binary Sort Tree),又称为二叉搜索树,则可以在高效率的查找下,同时保持插入和删除操作也又较高的效率。下图为典型的二叉排序树。

二叉查找树具有以下性质:
(1) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3) 任意节点的左、右子树也分别为二叉查找树。
查找操作
思路:查找值与结点数据对比,根据大小确定往左子树还是右子树进行下一步比较。
采用递归的查找算法
/*
* 查找
*/
public boolean SearchBST(int key) {
return SearchBST(key, root);
} private boolean SearchBST(int key, Node node) {
if (node == null)
return false;
if (node.data == key) {
return true;
} else if (node.data < key) {
return SearchBST(key, node.rChild);
} else {
return SearchBST(key, node.lChild);
}
}
采用非递归的查找算法
/*
* 查找,非递归
*/
public boolean SearchBST2(int key) {
Node p = root;
while (p != null) {
if (p.data > key) {
p = p.lChild;
} else if (p.data < key) {
p = p.rChild;
} else {
return true;
}
}
return false;
}
插入操作
思路:与查找类似,但需要一个父节点来进行赋值。
采用非递归的插入算法:
/*
* 插入,自己想的,非递归
*/
public boolean InsertBST(int key) {
Node newNode = new Node(key);
if (root == null) {
root = newNode;
return true;
}
Node f = null; // 指向父结点
Node p = root; // 当前结点的指针
while (p != null) {
if (p.data > key) {
f = p;
p = p.lChild;
} else if (p.data < key) {
f = p;
p = p.rChild;
} else {
System.out.println("树中已有相同数据,不再插入!");
return false;
}
}
if (f.data > key) {
f.lChild = newNode;
} else if (f.data < key) {
f.rChild = newNode;
}
return true;
}
采用递归的插入算法:
/*
* 插入,参考别人博客,递归
* 思路:把null情况排除后用递归,否则无法赋值
*/
public boolean InsertBST2(int key) {
if (root == null) {
root = new Node(key);
return true;
}
return InsertBST2(key, root);
} private boolean InsertBST2(int key, Node node) {
if (node.data > key) {
if (node.lChild == null) {
node.lChild = new Node(key);
return true;
} else {
return InsertBST2(key, node.lChild);
}
} else if (node.data < key) {
if (node.rChild == null) {
node.rChild = new Node(key);
return true;
} else {
return InsertBST2(key, node.rChild);
}
} else {
System.out.println("树中已有相同数据,不再插入!");
return false;
}
}
新补充:在写【Java】 大话数据结构(12) 查找算法(3) (平衡二叉树(AVL树))这篇博客时,发现以下的插入方法比较好(如果没有要求返回值必须为boolean格式的话):(推荐使用此类方法)
/*
* 插入操作
*/
public void insert(int key) {
root = insert(root, key);
} private Node insert(Node node, int key) {
if (node == null) {
// System.out.println("插入成功!");
// 也可以定义一个布尔变量来保存插入成功与否
return new Node(key);
}
if (key == node.data) {
System.out.println("数据重复,无法插入!");
} else if (key < node.data) {
node.lChild=insert(node.lChild, key);
} else {
node.rChild=insert(node.rChild, key);
}
return node;
}
删除操作
思路:
(1)删除叶子结点
直接删除;
(2)删除仅有左或右子树的结点
子树移动到删除结点的位置即可;
(3)删除左右子树都有的结点
找到删除结点p的直接前驱(或直接后驱)s,用s来替换结点p,然后删除结点s,如下图所示。

首先找到删除结点位置及其父结点
/*
* 删除操作,先找到删除结点位置及其父结点
* 因为需要有父结点,所以暂时没想到递归的方法(除了令Node对象带个parent属性)
*/
public boolean deleteBST(int key) {
if (root == null) {
System.out.println("空表,删除失败");
return false;
}
Node f = null; // 指向父结点
Node p = root; // 指向当前结点
while (p != null) {
if (p.data > key) {
f = p;
p = p.lChild;
} else if (p.data < key) {
f = p;
p = p.rChild;
} else {
delete(p, f);
return true;
}
}
System.out.println("该数据不存在");
return false;
}
再根据上述思路进行结点p的删除:(需注意删除结点为根节点的情况)
/*
* 删除结点P的操作
* 必须要有父结点,因为Java无法直接取得变量p的地址(无法使用*p=(*p)->lChild)
*/
private void delete(Node p, Node f) {// p为删除结点,f为其父结点
if (p.lChild == null) { // 左子树为空,重接右子树
if (p == root) { // 被删除结点为根结点时,无法利用f,该情况不能忽略
root = root.rChild;
p = null;
} else {
if (f.data > p.data) { // 被删结点为父结点的左结点,下同
f.lChild = p.rChild;
p = null; // 释放结点别忘了
} else {// 被删结点为父结点的右结点,下同
f.rChild = p.rChild;
p = null;
}
}
} else if (p.rChild == null) { // 右子树为空,重接左子树
if (p == root) { // 被删除结点为根结点
root = root.lChild;
p = null;
} else {
if (f.data > p.data) {
f.lChild = p.lChild;
p = null;
} else {
f.rChild = p.lChild;
p = null;
}
}
} else { // 左右子树都不为空,删除位置用前驱结点替代
Node q, s;
q = p;
s = p.lChild;
while (s.rChild != null) { // 找到待删结点的最大前驱s
q = s;
s = s.rChild;
}
p.data = s.data; // 改变p的data就OK
if (q != p) {
q.rChild = s.lChild;
} else {
q.lChild = s.lChild;
}
s = null;
}
}
完整代码(含测试代码)
package BST; /**
* 二叉排序树(二叉查找树)
* 若是泛型,则要求满足T extends Comparable<T> static问题
* @author Yongh
*
*/
class Node {
int data;
Node lChild, rChild; public Node(int data) {
this.data = data;
lChild = null;
rChild = null;
}
} public class BSTree {
private Node root; public BSTree() {
root = null;
} /*
* 查找
*/
public boolean SearchBST(int key) {
return SearchBST(key, root);
} private boolean SearchBST(int key, Node node) {
if (node == null)
return false;
if (node.data == key) {
return true;
} else if (node.data < key) {
return SearchBST(key, node.rChild);
} else {
return SearchBST(key, node.lChild);
}
} /*
* 查找,非递归
*/
public boolean SearchBST2(int key) {
Node p = root;
while (p != null) {
if (p.data > key) {
p = p.lChild;
} else if (p.data < key) {
p = p.rChild;
} else {
return true;
}
}
return false;
} /*
* 插入,自己想的,非递归
*/
public boolean InsertBST(int key) {
Node newNode = new Node(key);
if (root == null) {
root = newNode;
return true;
}
Node f = null; // 指向父结点
Node p = root; // 当前结点的指针
while (p != null) {
if (p.data > key) {
f = p;
p = p.lChild;
} else if (p.data < key) {
f = p;
p = p.rChild;
} else {
System.out.println("数据重复,无法插入!");
return false;
}
}
if (f.data > key) {
f.lChild = newNode;
} else if (f.data < key) {
f.rChild = newNode;
}
return true;
} /*
* 插入,参考别人博客,递归
* 思路:类似查找,
* 但若方法中的node为null的话,将无法插入新数据,需排除null的情况
*/
public boolean InsertBST2(int key) {
if (root == null) {
root = new Node(key);
return true;
}
return InsertBST2(key, root);
} private boolean InsertBST2(int key, Node node) {
if (node.data > key) {
if (node.lChild == null) { // 有null的情况下,才有父结点
node.lChild = new Node(key);
return true;
} else {
return InsertBST2(key, node.lChild);
}
} else if (node.data < key) {
if (node.rChild == null) {
node.rChild = new Node(key);
return true;
} else {
return InsertBST2(key, node.rChild);
}
} else {
System.out.println("数据重复,无法插入!");
return false;
}
} /*
* 这样的插入是错误的(node无法真正被赋值)
*/
/*
private boolean InsertBST2(int key, Node node) {
if(node!=null) {
if (node.data > key)
return InsertBST2(key, node.lChild);
else if (node.data < key)
return InsertBST2(key, node.rChild);
else
return false;//重复
}else {
node=new Node(key);
return true;
}
}
*/ /*
* 删除操作,先找到删除结点位置及其父结点
* 因为需要有父结点,所以暂时没想到递归的方法(除了令Node对象带个parent属性)
*/
public boolean deleteBST(int key) {
if (root == null) {
System.out.println("空表,删除失败");
return false;
}
Node f = null; // 指向父结点
Node p = root; // 指向当前结点
while (p != null) {
if (p.data > key) {
f = p;
p = p.lChild;
} else if (p.data < key) {
f = p;
p = p.rChild;
} else {
delete(p, f);
System.out.println("删除成功!");
return true;
}
}
System.out.println("该数据不存在");
return false;
} /*
* 删除结点P的操作
* 必须要有父结点,因为Java无法直接取得变量p的地址(无法使用*p=(*p)->lChild)
*/
private void delete(Node p, Node f) {// p为删除结点,f为其父结点
if (p.lChild == null) { // 左子树为空,重接右子树
if (p == root) { // 被删除结点为根结点,该情况不能忽略
root = root.rChild;
p = null;
} else {
if (f.data > p.data) { // 被删结点为父结点的左结点,下同
f.lChild = p.rChild;
p = null; // 释放结点别忘了
} else {// 被删结点为父结点的右结点,下同
f.rChild = p.rChild;
p = null;
}
}
} else if (p.rChild == null) { // 右子树为空,重接左子树
if (p == root) { // 被删除结点为根结点
root = root.lChild;
p = null;
} else {
if (f.data > p.data) {
f.lChild = p.lChild;
p = null;
} else {
f.rChild = p.lChild;
p = null;
}
}
} else { // 左右子树都不为空,删除位置用前驱结点替代
Node q, s;
q = p;
s = p.lChild;
while (s.rChild != null) { // 找到待删结点的最大前驱s
q = s;
s = s.rChild;
}
p.data = s.data; // 改变p的data就OK
if (q != p) {
q.rChild = s.lChild;
} else {
q.lChild = s.lChild;
}
s = null;
}
} /*
* 中序遍历
*/
public void inOrder() {
inOrder(root);
System.out.println();
} public void inOrder(Node node) {
if (node == null)
return;
inOrder(node.lChild);
System.out.print(node.data + " ");
inOrder(node.rChild);
} /*
* 测试代码
*/
public static void main(String[] args) {
BSTree aTree = new BSTree();
BSTree bTree = new BSTree();
int[] arr = { 62, 88, 58, 47, 35, 73, 51, 99, 37, 93 };
for (int a : arr) {
aTree.InsertBST(a);
bTree.InsertBST2(a);
}
aTree.inOrder();
bTree.inOrder();
System.out.println(aTree.SearchBST(35));
System.out.println(bTree.SearchBST2(99));
aTree.deleteBST(47);
aTree.inOrder();
}
}
true
true
删除成功!
BSTree
小结(自己编写时的注意点):
查找:操作简单,注意递归的方法没有循环while (p!=null),而是并列的几个判断;
插入:非递归时,要有父结点;递归时,要注意排除null的情况;
删除:记住要分两步,第一步找结点位置时也要把父结点带上;第二步删除结点时,要令p=null,还要注意p==root的情况以及q==p的情况。
【Java】 大话数据结构(11) 查找算法(2)(二叉排序树/二叉搜索树)的更多相关文章
- Java与算法之(13) - 二叉搜索树
查找是指在一批记录中找出满足指定条件的某一记录的过程,例如在数组{ 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }中查找数字15,实现代码很简单 ...
- 【Java】 大话数据结构(12) 查找算法(3) (平衡二叉树(AVL树))
本文根据<大话数据结构>一书及网络资料,实现了Java版的平衡二叉树(AVL树). 平衡二叉树介绍 在上篇博客中所实现的二叉排序树(二叉搜索树),其查找性能取决于二叉排序树的形状,当二叉排 ...
- 【数据结构05】红-黑树基础----二叉搜索树(Binary Search Tree)
目录 1.二分法引言 2.二叉搜索树定义 3.二叉搜索树的CRUD 4.二叉搜索树的两种极端情况 5.二叉搜索树总结 前言 在[算法04]树与二叉树中,已经介绍过了关于树的一些基本概念以及二叉树的前中 ...
- LeetCode第[98]题(Java):Validate Binary Search Tree(验证二叉搜索树)
题目:验证二叉搜索树 难度:Medium 题目内容: Given a binary tree, determine if it is a valid binary search tree (BST). ...
- 看动画学算法之:平衡二叉搜索树AVL Tree
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜 ...
- 【Java】 大话数据结构(10) 查找算法(1)(顺序、二分、插值、斐波那契查找)
本文根据<大话数据结构>一书,实现了Java版的顺序查找.折半查找.插值查找.斐波那契查找. 注:为与书一致,记录均从下标为1开始. 顺序表查找 顺序查找 顺序查找(Sequential ...
- 【Java】 大话数据结构(13) 查找算法(4) (散列表(哈希表))
本文根据<大话数据结构>一书,实现了Java版的一个简单的散列表(哈希表). 基本概念 对关键字key,将其值存放在f(key)的存储位置上.由此,在查找时不需比较,只需计算出f(key) ...
- Java实现 LeetCode 108 将有序数组转换为二叉搜索树
108. 将有序数组转换为二叉搜索树 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
随机推荐
- JAVA记录-JSP内容
JSP(JavaServer Pages )是什么? JavaServer Pages(JSP)是一种支持动态内容开发的网页技术它可以帮助开发人员通过利用特殊的JSP标签,其中大部分以<%开始并 ...
- Red Pen - 快速高效的获取设计项目的反馈
Red Pen 让设计师能够快速,高效的从你的同事和客户获取反馈.只需要简单的拖放图像到 Red Pen 主页,然后把生成的链接分享给你的同事或者客户.他们打开链接就能看到设计稿,并给予实时的反馈,所 ...
- Asp.Net中索引器的用法
索引器定义类似于属性,但其功能与属性并不相同.索引器提供一种特殊的方法编写get和set访问器.属性可以像访问字段一样访问对象的数据,索引器可以使用户像访问数组一样访问类成员. 一.索引器特性 1.g ...
- iOS数据库操作之coredata详细操作步骤
CHENYILONG Blog iOS数据库操作之coredata详细操作步骤 技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http://weibo.com/ ...
- 最短路 spfa+STL
与迪杰斯特拉相同的是spfa也是用来求单源点的最短路径问题,但是,当问题中的边是有向负边的时候,迪杰斯特拉就无能为力了, 而且给我的感觉是spfa如何结合STL来用的话代码比迪杰斯特拉的还要短一点,只 ...
- Convert Expression to Reverse Polish Notation
Given an expression string array, return the Reverse Polish notation of this expression. (remove the ...
- Shape Factory
Factory is a design pattern in common usage. Implement a ShapeFactory that can generate correct shap ...
- linux远程windows执行命令
Linux下远程连接windows,执行命令 - Feng______的专栏 - 博客频道 - CSDN.NEThttp://blog.csdn.net/feng______/article/deta ...
- php扩展Redis功能
php扩展Redis功能 1 首先,查看所用php编译版本V6/V9 在phpinfo()中查看 2 下载扩展 地址:https://github.com/nicolasff/phpredis/dow ...
- Uploadify3.2中文提示
版本:Uploadify Version 3.2官网:http://www.uploadify.com Uploadify是一款基于Jquery的上传插件,用起来很方便.但上传过程中的提示语言为英文, ...