1.标准误概念

标准误是数据统计的重点概念,且难以理解。百度上文章缺乏详细描述的文章。所以写下此文让读者能够彻彻底底了解标准误概念。

标准误全称:样本均值的标准误(Standard Error for the Sample Mean),顾名思义,标准误是用于衡量样本均值和总体均值的差距。

2.标准误意义:

用于衡量样本均值和总体均值的差距有多大?

标准误越小----样本均值和总体均值差距越小

标准误越大----样本均值和总体均值差距越大

标准误用于预测样本数据准确性 ,标准误越小,样本均值和总体均值差距越小,样本数据越能代表总体数据。

3.标准误与标准差区别:

对一个总体多次抽样,每次样本大小都为n,那么每个样本都有自己的平均值,这些平均值的标准差叫做标准误。

标准差是单次抽样得到的,用单次抽样得到的标准差可以估计多次抽样才能得到的标准误差

标准差表示数据离散程度:

标准差越大,分布越广,集中程度越差,均值代表性越差

标准差越小,分布集中在平均值附近,均值代表性更好

标准差与标准误不同应用范围:
标准差:(图左)在正负两个标准差(95%概率下),Jack消耗时间在68-132秒之间。
标准误:(图右)在正负两个标准误,Jack消耗平均时间大约在95-105秒之间。

4.标准误计算例子

什么是真实的标准误?举个例子,对一个总体12次抽样,生成12个样本,每个样本大小都为5。那么每个样本都有自己的平均值,这些平均值的标准差叫做标准误差。这里就是对表格最后一行数组计算标准差(100,101,99,114,103.....93),最后算出来标准误结果为6.33。

但是为了得到标准误,我们不可能做很多次科学实验。实际上我们可以做一次样本实验,然后采用估算公式:

如下图,我们用第一组样本估算真实标准误,此样本标准差除以根号n,结果为7.16, 然后把7.16约等为真实的标准误6.33。

所以标准误也是另外一种形式的标准差,标准误和总体标准差既有相似处,又有区别。标准误是一个比较难得概念,读者一次不能很好理解,如果反复看此文章,然后自己动手程序模拟,就会增强直观印象,加深理解。

所有的随机样本中,如果数量相同,它们的标准误默认为近似相同(非真正相同)

5.标准误的应用
我们有两组数据,一组观看了指导视频,一组没有观看指导视频,比较两组数据在得分方面有无显著差异?

随着样本量不同,我们得到的结果不同。图左,两组数据没有区别,图中两组数据可能有区别,可能没有;图右两组数据有区别
样本量为3时,看视频组的2*标准误为15,没看视频的2*标准误为13。

样本量小时,标准误很大,样本均值和总体均值差异很大,样本数据的代表性很差。

样本量为5时,看视频组的2*标准误为9,没看视频的2*标准误为10。

样本量增大后,标准误变小。

样本量为10时,看视频组的2*标准误为7,没看视频的2*标准误为6。
样本量增大后,标准误再次变小

随着样本量不同,我们得到的结果不同。下面的图左(样本量为3),两组数据没有区别,图中(样本量为5)两组数据可能有区别,可能没有;图右(样本量为10)两组数据有区别
实际上,众多毕业论文和专业期刊的统计分析都是错的,虽有华丽的可视化图表,但新手很容易因样本量太小得到错误结果。

6.蒙特卡洛模拟

蒙特卡洛验证,对一组样本进行标准误评估,看公式SE = s/√(n)是否准确

结果表明SE = s/√(n)公式得到的标准误和真实标准误非常接近

样本值100,标准误很小,大约0.1

样本值10,标准误增大,大约0.33

样本值5,标准误再次增大,大约0.45

源代码如下

问题反馈邮箱231469242@qq.com

# -*- coding: utf-8 -*-

import random,math

import numpy as np

n=1000

normal_population=list(np.random.normal(size=n))

mean_population=np.mean(normal_population)

#总体标准差

sigma=np.std(normal_population,ddof=0)

#存放多个随机样本

list_samples=[]

#多个随机样本的平均数

list_samplesMean=[]

#求单个样本估算的标准误

def Standard_error(sample):

std=np.std(sample,ddof=0)

standard_error=std/math.sqrt(len(sample))

return standard_error

#求真实标准误

def Standard_error_real():

for i in range(100):

sample=random.sample(normal_population,100)

list_samples.append(sample)

list_samplesMean=[np.mean(i) for
i in list_samples]

standard_error_real=np.std(list_samplesMean,ddof=0)

return standard_error_real

#plt.hist(normal_values)

#真实标准误

standard_error_real=Standard_error_real()

print(standard_error_real)

#随机抽样

print(Standard_error(list_samples[0]))

print(Standard_error(list_samples[1]))

print(Standard_error(list_samples[2]))

End.

标准误(Standard Error)的更多相关文章

  1. 标准差(standard deviation)和标准误差(standard error)你能解释清楚吗?

    by:ysuncn(欢迎转载,请注明原创信息) 什么是标准差(standard deviation)呢?依据国际标准化组织(ISO)的定义:标准差σ是方差σ2的正平方根:而方差是随机变量期望的二次偏差 ...

  2. 标准差(standard deviation)和标准错误(standard error)你能解释一下?

    by:ysuncn(欢迎转载,转载请注明原始消息) 什么是标准差(standard deviation)呢?依据国际标准化组织(ISO)的定义:标准差σ是方差σ2的正平方根.而方差是随机变量期望的二次 ...

  3. 标准差standard deviation和标准错误standard error你能解释一下

    by:ysuncn(欢迎转载,请注明原创信息) 什么是标准差(standard deviation)呢?依据国际标准化组织(ISO)的定义:标准差σ是方差σ2的正平方根:而方差是随机变量期望的二次偏差 ...

  4. Standard Error of Mean(s.e.m.)

    · 来源:http://www.dxy.cn/bbs/thread/6492633#6492633 6楼: “据我所知,SD( standard deviation )反应的是观测值的变异性,其表示平 ...

  5. 标准差(Standard Deviation) 和 标准误差(Standard Error)

    本文摘自 Streiner DL.Maintaining standards: differences between the standard deviation and standarderror ...

  6. Oracle Standard Error 列表

    今天,我特意从网上找了一些,以及自己平时总结的,关于错误编号和说明,平时我们在写项目的时候,往往是可能会出现下面这些错误,例如:违反唯一约束,无效的会话ID,等等.希望对大家有点帮助!可以看看,如果有 ...

  7. 对于随机变量的标准差standard deviation、样本标准差sample standard deviation、标准误差standard error的解释

    参考:http://blog.csdn.net/ysuncn/article/details/1749729

  8. Logistic 回归模型 第一遍阅读笔记

    MLE :最大似然估计,求得的这套参数估计能够通过指定模型以最大概率在线样本观测数据 必须来自随机样本,自变量与因变量之间是线性关系 logistic 回归没有关于自变量分布的假设条件,自变量可以连续 ...

  9. seaborn库中柱状图绘制详解

    柱状图用于反映数值变量的集中趋势,用误差线估计变量的差值统计.理解误差线有助于我们准确的获取柱状图反映的信息,因此打算先介绍一下误差线方面的内容,然后介绍一下利用seaborn库绘制柱状图. 1.误差 ...

随机推荐

  1. VMware桥接模式连接局域网

    今天尝试虚拟机直连家里的局域网,用于方便另外一台主机使用家里的虚拟机. 本次连接方式是通过桥接方式,但由于'桥接到'选项默认自动,导致无法连通,最终以下步骤完成配置: 第一步:确认本地网关地址 第二步 ...

  2. 表单设置 disabled 后无法传值到后台的解决办法

    在提交 from 表单时,下面的 input 无法正常提交给后台, 发现,如果input的字段设为disabled,该表单是无法提交的. <input type="text" ...

  3. 新员工入门 - for测试

    23456人员介绍 XXX 测试工作 [软件] Chrome 浏览器.jsonviewer.Firefox.FireBug HTTP协议与抓包 - fildder.wireshirk等 DB查询工具 ...

  4. 2、Docker镜像和镜像管理

    一.镜像介绍 1.定义 一个只读层被称为镜像,一个镜像是永久不会变的. 由于 Docker 使用一个统一文件系统,Docker 进程认为整个文件系统是以读写方式挂载的. 但是所有的变更都发生顶层的可写 ...

  5. Js_特效II

    字号缩放 让文字大点,让更多的用户看的更清楚.(也可以把字体变为百分比来实现)<script type="text/javascript">  function doZ ...

  6. linux重启tomcat的shell脚本

    基本思路: 先检查待重启的tomcat的进程是否存在 存在则执行shutdown. 然后再次检查进程是否还存在,不存在则执行kill 然后删除工作空间及10天前的日志. 最后执行启动. #!/bin/ ...

  7. unity学习路线_重新出发

    入门级 1.先观看视频教程做一个小案例 官方英文:Unity - Learn – Modules 国内中文:Sike学院 基础级 1.你需要接触完整性的教程网站 Siki学院 Unity游戏开发从入门 ...

  8. Kubernetes并发控制与数据一致性的实现原理

    在大型分布式系统中,定会存在大量并发写入的场景.在这种场景下如何进行更好的并发控制,即在多个任务同时存取数据时保证数据的一致性,成为分布式系统必须解决的问题.悲观并发控制和乐观并发控制是并发控制中采用 ...

  9. 智能合约bug以及修改方案

    截取两篇文章:第一遍文章说的是智能合约能不能修改的问题: ETC转到ETH地址以及转币进ETH智能合约账户能不能转出来? 第0章 引言 如果ETC充值到了ETH地址上,能找回来吗?答案是不一定. ET ...

  10. 《Linux内核分析》第二周学习报告

    <Linux内核分析>第二周学习报告 ——操作系统是如何工作的 姓名:王玮怡  学号:20135116 第一节 函数调用堆栈 一.三个法宝 二.深入理解函数调用堆栈 三.参数传递与局部变量 ...