【bzoj2877】 Noi2012—魔幻棋盘
http://www.lydsy.com/JudgeOnline/problem.php?id=2877 (题目链接)
题意
一个${n*m}$的矩阵,维护两个操作:给任意子矩阵${+val}$;问某一包含点${(X,Y)}$的矩阵内元素的gcd。
Solution
左转题解,参见PoPoQQQ,写的蛮详细的,像我这种没写过树套树的都会了→_→。
代码也是模着PoPoQQQ大爷的写的,边界真的好蛋疼。
对于不能用以任意一点为差分中心的原因,我有一点自己的看法。我们考虑之所以差分后的数组的gcd与原数组的gcd相等是为什么,不是更相减损吗,考虑一维的情况,如果我们本来要求${gcd(a_2,a_3,a_4,a_5)}$,我们以${a_1}$为中心差分的话,那么就成了求解差分数组的${gcd(a_2-a_1,a_3-a_2,a_4-a_3,a_5-a_4)}$,这就不符合更相减损术了,因为里面莫名其妙混进了个${a_1}$。为了避免这种情况,我们以一定包含在询问矩阵内的${(X,Y)}$为中心差分,这就保证了差分后每一个询问矩阵中不包含在矩阵外的原矩阵的元素。也就是说,如果没有${(X,Y)}$一定包含在询问矩阵中这个条件的话,这个题应该是做不了的。
细节
这里并没有给出${n,m}$的具体范围,所以我们需要使用黑科技读入矩阵。
LL,边界的分类讨论注意别写错点的坐标。
代码
// bzoj2877
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500010;
int n,m,Q,X,Y,rt,sz; struct segtree {int l,r,ls,rs,tree;LL val;}tr[maxn<<4];
struct array { //来自PoPoQQQ的黑科技
LL t[maxn];
LL* operator [] (int x) {return &t[(x-1)*m];}
}a; LL gcd(LL a,LL b) {
return b==0 ? a : gcd(b,a%b);
} namespace Col {
void build(int &k,int s,int t,int p) {
k=++sz;tr[k].l=s,tr[k].r=t;
if (s==t) {tr[k].val=a[p][s];return;}
int mid=(s+t)>>1;
build(tr[k].ls,s,mid,p);
build(tr[k].rs,mid+1,t,p);
tr[k].val=gcd(tr[tr[k].ls].val,tr[tr[k].rs].val);
}
void modify(int k,int p,LL val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==r) {tr[k].val+=val;return;}
if (p<=mid) modify(tr[k].ls,p,val);
else modify(tr[k].rs,p,val);
tr[k].val=gcd(tr[tr[k].ls].val,tr[tr[k].rs].val);
}
LL query(int k,int s,int t) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) return tr[k].val;
if (t<=mid) return query(tr[k].ls,s,t);
else if (s>mid) return query(tr[k].rs,s,t);
else return gcd(query(tr[k].ls,s,mid),query(tr[k].rs,mid+1,t));
}
} namespace Row {
void merge(int &k,int k1,int k2,int s,int t) {
if (!k) k=++sz,tr[k].l=s,tr[k].r=t;
int mid=(s+t)>>1;
if (s==t) {tr[k].val=gcd(tr[k1].val,tr[k2].val);return;}
merge(tr[k].ls,tr[k1].ls,tr[k2].ls,s,mid);
merge(tr[k].rs,tr[k1].rs,tr[k2].rs,mid+1,t);
tr[k].val=gcd(tr[tr[k].ls].val,tr[tr[k].rs].val);
}
void build(int &k,int s,int t) {
k=++sz;tr[k].l=s,tr[k].r=t;
if (s==t) {Col::build(tr[k].tree,1,m,s);return;}
int mid=(s+t)>>1;
build(tr[k].ls,s,mid);
build(tr[k].rs,mid+1,t);
merge(tr[k].tree,tr[tr[k].ls].tree,tr[tr[k].rs].tree,1,m);
}
void modify(int k,int x,int y,LL val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==r) {Col::modify(tr[k].tree,y,val);return;}
if (x<=mid) modify(tr[k].ls,x,y,val);
else modify(tr[k].rs,x,y,val);
LL lval=Col::query(tr[tr[k].ls].tree,y,y);
LL rval=Col::query(tr[tr[k].rs].tree,y,y);
LL mval=Col::query(tr[k].tree,y,y);
Col::modify(tr[k].tree,y,gcd(lval,rval)-mval);
}
LL query(int k,int x1,int y1,int x2,int y2) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==x1 && r==x2) return Col::query(tr[k].tree,y1,y2);
if (x2<=mid) return query(tr[k].ls,x1,y1,x2,y2);
else if (x1>mid) return query(tr[k].rs,x1,y1,x2,y2);
else return gcd(query(tr[k].ls,x1,y1,mid,y2),query(tr[k].rs,mid+1,y1,x2,y2));
}
}
using namespace Row; int main() {
scanf("%d%d%d%d%d",&n,&m,&X,&Y,&Q);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) scanf("%lld",&a[i][j]);
for (int i=1;i<=n;i++) {
for (int j=1;j<Y;j++) a[i][j]-=a[i][j+1];
for (int j=m;j>Y;j--) a[i][j]-=a[i][j-1];
}
for (int j=1;j<=m;j++) {
for (int i=1;i<X;i++) a[i][j]-=a[i+1][j];
for (int i=n;i>X;i--) a[i][j]-=a[i-1][j];
}
build(rt,1,n);
for (int op,x1,y1,x2,y2,i=1;i<=Q;i++) {
scanf("%d%d%d%d%d",&op,&x1,&y1,&x2,&y2);
if (op==0) {
x1=X-x1;y1=Y-y1;x2=X+x2;y2=Y+y2;
printf("%lld\n",abs(query(rt,x1,y1,x2,y2)));
}
else {
LL val;scanf("%lld",&val);
//左上端点(x1,y1)
if (x1<=X && y1<=Y && x1>1 && y1>1) modify(rt,x1-1,y1-1,val);
else if (x1<=X && y1>Y && x1>1) modify(rt,x1-1,y1,-val);
else if (x1>X && y1<=Y && y1>1) modify(rt,x1,y1-1,-val);
else if (x1>X && y1>Y) modify(rt,x1,y1,val);
//右上端点(x1,y2)
if (x1<=X && y2>=Y && x1>1 && y2<m) modify(rt,x1-1,y2+1,val);
else if (x1<=X && y2<Y && x1>1) modify(rt,x1-1,y2,-val);
else if (x1>X && y2>=Y && y2<m) modify(rt,x1,y2+1,-val);
else if (x1>X && y2<Y) modify(rt,x1,y2,val);
//左下端点(x2,y1)
if (x2>=X && y1<=Y && x2<n && y1>1) modify(rt,x2+1,y1-1,val);
else if (x2<X && y1<=Y && y1>1) modify(rt,x2,y1-1,-val);
else if (x2>=X && y1>Y && x2<n) modify(rt,x2+1,y1,-val);
else if (x2<X && y1>Y) modify(rt,x2,y1,val);
//右下端点(x2,y2)
if (x2>=X && y2>=Y && x2<n && y2<m) modify(rt,x2+1,y2+1,val);
else if (x2>=X && y2<Y && x2<n) modify(rt,x2+1,y2,-val);
else if (x2<X && y2>=Y && y2<m) modify(rt,x2,y2+1,-val);
else if (x2<X && y2<Y) modify(rt,x2,y2,val); if (x1<=X && x2>=X) {
//左端点(X,y1)
if (y1<=Y && y1>1) modify(rt,X,y1-1,-val);
else if (y1>Y) modify(rt,X,y1,val);
//右端点(X,y2)
if (y2>=Y && y2<m) modify(rt,X,y2+1,-val);
else if (y2<Y) modify(rt,X,y2,val);
} if (y1<=Y && y2>=Y) {
//上端点
if (x1<=X && x1>1) modify(rt,x1-1,Y,-val);
else if (x1>X) modify(rt,x1,Y,val);
//下端点
if (x2>=X && x2<n) modify(rt,x2+1,Y,-val);
else if (x2<X) modify(rt,x2,Y,val);
} if (x1<=X && x2>=X && y1<=Y && y2>=Y) modify(rt,X,Y,val);
}
}
return 0;
}
【bzoj2877】 Noi2012—魔幻棋盘的更多相关文章
- BZOJ2877 NOI2012魔幻棋盘(二维线段树)
显然一个序列的gcd=gcd(其差分序列的gcd,序列中第一个数).于是一维情况直接线段树维护差分序列即可. 容易想到将该做法拓展到二维.于是考虑维护二维差分,查询时对差分矩阵求矩形的gcd,再对矩形 ...
- [BZOJ2877][NOI2012]魔幻棋盘(二维线段树)
https://blog.sengxian.com/solutions/bzoj-2877 注意二维线段树的upd()也是一个O(log n)的函数(pushdown()应该也是但没写过). #inc ...
- BZOJ2877 [Noi2012]魔幻棋盘
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- BZOJ2877:[NOI2012]魔幻棋盘
浅谈树状数组与主席树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://lydsy.com/JudgeOnline/problem. ...
- 2877: [Noi2012]魔幻棋盘 - BZOJ
DescriptionInput 第一行为两个正整数N,M,表示棋盘的大小. 第二行为两个正整数X,Y,表示棋盘守护者的位置. 第三行仅有一个正整数T,表示棋盘守护者将进行次操作. 接下来N行,每行有 ...
- NOI2012 魔幻棋盘
http://www.lydsy.com/JudgeOnline/problem.php?id=2877 二维线段树. 好恶...... B类数据: 棋盘是一维的. 我们有一个结论: $gcd(a_{ ...
- 题解 洛谷 P2086 【[NOI2012]魔幻棋盘】
先考虑只有一维的情况,要求支持区间加和求区间 \(\gcd\),根据 \(\gcd\) 的性质,发现: \[ \gcd(a_1,a_2,a_3,\ldots a_n)=\gcd(a_i,a_2-a_1 ...
- 数据结构(二维线段树,差分): NOI2012 魔幻棋盘
貌似想复杂了…… #include <iostream> #include <cstring> #include <cstdio> #define mid ((l+ ...
- 【NOI2012】魔幻棋盘
Description 将要读二年级的小 Q 买了一款新型益智玩具——魔幻棋盘,它是一个N行M列的网格棋盘,每个格子中均有一个正整数.棋盘守护者在棋盘的第X行Y列(行与列均从1开始编号) 并且始终不会 ...
随机推荐
- 在testbench从文件读入激励
在验证verilog逻辑模块功能时候,我们可以从文件中读入激励,便于大规模的验证.文件中的数据我们可以用c++编写程序产生. 第一种读入文件的方法是用系统函数:$readmemb, readmemh, ...
- 20155218《网络对抗》MSF基础应用
20155218<网络对抗>MSF基础应用 实验过程 1.一个主动攻击实践,如ms08_067; 首先使用 search ms08_067查询一下该漏洞: show target 查看可以 ...
- MySql+Socket 完成数据库的增查Demo
需求: 利用MySql数据库结合前端技术完成用户的注册(要求不使用Web服务技术),所以 Demo采用Socket技术实现Web通信. 第一部分:数据库创建 数据库采用mysql 5.7.18, 数据 ...
- 隐马尔科夫模型研究 stock 以及 lotto
说明 本文参考了这里 由于数据是连续的,因此使用了高斯隐马尔科夫模型:gaussianHMM 一.stock代码 import tushare as ts import pandas as pd im ...
- spfa 单源最短路究极算法
学习博客链接:SPFA 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm. SPFA算法是西南交通大学段凡丁于1994年发表的. 从名字我 ...
- [UOJ#461]新年的Dog划分[二分图染色、二分]
题意 给你一张无向连通图,你并不知道有哪些边,你首先要回答这张图是否是二分图,如果是,回答这张图黑白染色过后的任意一个点集.你需要在2000次询问内找到结果,每次你可以询问原图中一个边集删掉后是否还连 ...
- JavaScript快速入门-ECMAScript本地对象(Date)
JavaScript中的Date 对象用于处理日期和时间. var myDate=new Date() #Date 对象会自动把当前日期和时间保存为其初始值. 一.Date对象的方法 方法 示例 n ...
- jenkins pipeline 部署
一.git 版本控制结合jenkins 发布 sh-4.2$ git branch sh-4.2$ git chekout master sh-4.2$ git tag v1.1 sh-4.2$ gi ...
- leetcode刷题笔记172 阶乘后的零
题目描述: 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例1: 输入: 输出: 解释: ! = , 尾数中没有零. 示例2: 输入: 输出: 解释: ! = , 尾数中有 个零. 说明: 你 ...
- Notes of Daily Scrum Meeting(12.20)
今天是周六,大家空余的时间还是挺多的,也都主动完成了当天工作,最后由于我的失误,在晚上12点 之前没有把进度签入进TFS里面,所以周六的燃尽图是错误的,我把进度加进周日,总的进度会在周日的燃尽 图里面 ...