【BZOJ1967】[AHOI2005]穿越磁场(最短路)
【BZOJ1967】[AHOI2005]穿越磁场(最短路)
题面
题解
一个显然的思路是这样的,我们的正方形的边长把整个平面割成了若干块,显然每个联通块都可以看着做一个点,那么接下来只需要把所有的有相邻边的联通块全部连上一条长度为\(1\)的边表示如果要从这个联通块到达另外一个联通块,需要穿过这一条边,那么最终的答案就变成了起点和终点所在联通块的最短路。因为找联通块不好搞,其实离散之后再当成网格图做就好了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define ll long long
#define MAX 250
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Matrix{int x1,x2,y1,y2;}p[MAX<<1];
int n,Sx[MAX<<3],Sy[MAX<<3],tx,ty;
int Bx,By,Ex,Ey;
bool visx[MAX<<1][MAX<<1],visy[MAX<<1][MAX<<1];
struct Line{int v,next,w;}e[MAX*MAX*10];
int h[MAX*MAX<<2],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
int d[4][2]={1,0,-1,0,0,1,0,-1};
int id(int x,int y){return x*ty+y-ty;}
int dis[MAX*MAX<<1];bool vis[MAX*MAX<<1];
void SPFA()
{
queue<int> Q;Q.push(id(Bx,By));
memset(dis,63,sizeof(dis));dis[id(Bx,By)]=0;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]>dis[u]+e[i].w)
{
dis[v]=dis[u]+e[i].w;
if(!vis[v])vis[v]=true,Q.push(v);
}
}
vis[u]=false;
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
int x=read(),y=read(),c=read();
p[i]=(Matrix){x,x+c,y+c,y};
}
Bx=read();By=read();Ex=read();Ey=read();
Sx[++tx]=Bx;Sx[++tx]=Ex;Sy[++ty]=By;Sy[++ty]=Ey;
for(int i=1;i<=n;++i)Sx[++tx]=p[i].x1,Sx[++tx]=p[i].x2;
for(int i=1;i<=n;++i)Sy[++ty]=p[i].y1,Sy[++ty]=p[i].y2;
sort(&Sx[1],&Sx[tx+1]);sort(&Sy[1],&Sy[ty+1]);
tx=unique(&Sx[1],&Sx[tx+1])-Sx-1;ty=unique(&Sy[1],&Sy[ty+1])-Sy-1;
for(int i=2;i<=tx;++i)if(Sx[i]-Sx[i-1]>1)Sx[++tx]=Sx[i]-1;
for(int i=2;i<=ty;++i)if(Sy[i]-Sy[i-1]>1)Sy[++ty]=Sy[i]-1;
Sx[++tx]=-10;Sy[++ty]=-10;Sx[++tx]=1e9;Sy[++ty]=1e9;
sort(&Sx[1],&Sx[tx+1]);sort(&Sy[1],&Sy[ty+1]);
tx=unique(&Sx[1],&Sx[tx+1])-Sx-1;ty=unique(&Sy[1],&Sy[ty+1])-Sy-1;
for(int i=1;i<=n;++i)
{
p[i].x1=lower_bound(&Sx[1],&Sx[tx+1],p[i].x1)-Sx;
p[i].x2=lower_bound(&Sx[1],&Sx[tx+1],p[i].x2)-Sx;
p[i].y1=lower_bound(&Sy[1],&Sy[ty+1],p[i].y1)-Sy;
p[i].y2=lower_bound(&Sy[1],&Sy[ty+1],p[i].y2)-Sy;
for(int j=p[i].x1;j<=p[i].x2;++j)visx[j][p[i].y1-1]=visx[j][p[i].y2-1]=true;
for(int j=p[i].y2;j<=p[i].y1;++j)visy[p[i].x1][j]=visy[p[i].x2][j]=true;
}
Bx=lower_bound(&Sx[1],&Sx[tx+1],Bx)-Sx;By=lower_bound(&Sy[1],&Sy[ty+1],By)-Sy;
Ex=lower_bound(&Sx[1],&Sx[tx+1],Ex)-Sx;Ey=lower_bound(&Sy[1],&Sy[ty+1],Ey)-Sy;
for(int i=1;i<=tx;++i)
for(int j=1;j<=ty;++j)
for(int k=0;k<4;++k)
{
int x=i+d[k][0],y=j+d[k][1];
if(x<1||y<1||x>tx||y>ty)continue;
if(k==0)Add(id(i,j),id(x,y),visy[x][y]);
if(k==1)Add(id(i,j),id(x,y),visy[i][j]);
if(k==2)Add(id(i,j),id(x,y),visx[i][j]);
if(k==3)Add(id(i,j),id(x,y),visx[x][y]);
}
SPFA();
printf("%d\n",dis[id(Ex,Ey)]);
return 0;
}
【BZOJ1967】[AHOI2005]穿越磁场(最短路)的更多相关文章
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
- Sicily 1031: Campus (最短路)
这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...
- 最短路(Floyd)
关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...
- bzoj1266最短路+最小割
本来写了spfa wa了 看到网上有人写Floyd过了 表示不开心 ̄へ ̄ 改成Floyd试试... 还是wa ヾ(。`Д´。)原来是建图错了(样例怎么过的) 结果T了 于是把Floyd改回spfa 还 ...
- HDU2433 BFS最短路
Travel Time Limit: 10000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- 最短路(代码来源于kuangbin和百度)
最短路 最短路有多种算法,常见的有一下几种:Dijstra.Floyd.Bellman-Ford,其中Dijstra和Bellman-Ford还有优化:Dijstra可以用优先队列(或者堆)优化,Be ...
- Javascript优化细节:短路表达式
什么是短路表达式? 短路表达式:作为"&&"和"||"操作符的操作数表达式,这些表达式在进行求值时,只要最终的结果已经可以确定是真或假,求值过程 ...
- Python中三目计算符的正确用法及短路逻辑
今天在看别人代码时看到这样一种写法, 感觉是个挺容易踩到的坑, 搞清楚后写出来备忘. 短路逻辑 Python中进行逻辑运算的时候, 默认采用的是一种叫做短路逻辑的运算规则. 名字是很形象的, 下面直接 ...
随机推荐
- 深入解析Java中的装箱和拆箱
自己主动装箱和拆箱问题是Java中一个老生常谈的问题了,今天我们就来一些看一下装箱和拆箱中的若干问题.本文先讲述装箱和拆箱最主要的东西,再来看一以下试笔试中常常遇到的与装箱.拆箱相关的问题. 下面是本 ...
- Android提权原理
Android的内核就是Linux,所以Android获取root其实和Linux获取root权限是一回事儿. 你想在Linux下获取root权限的时候就是执行sudo或者su,接下来系统会提示你输入 ...
- Exp5
实验 实验1 - 直接攻击系统开启的漏洞服务,获取系统控制权 1.选择要使用的模块 在这里我选择的模块是ms08_067 首先我们需要查询一下有关ms08_067所在模块的相关信息 search ms ...
- WPF编程 ,TextBlock 显示百分数值的一种简单方法。
原文:WPF编程 ,TextBlock 显示百分数值的一种简单方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/ ...
- Data Consistency Primer
云应用通常来说,使用的数据很多都是分散的,来自不同的数据仓库.在这种环境下,管理和保持数据一致性是很复杂的,无论是在并发跟可用性上都可能出问题.开发者有的时候就需要为了强一致性而牺牲可用性了.这也就意 ...
- python 回溯法 子集树模板 系列 —— 18、马踏棋盘
问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...
- CF708D Incorrect Flow
CF708D Incorrect Flow 有源汇上下界最小费用可行流.(= =) 对每条给定的边连边: 首先\(f_i\)是给定的,所以要有一条这个边而且要流满,先\(a_i-b_i\)连一条上下界 ...
- flask之jinjia2模板(二)
1.1.模板传参 (1)主程序 from flask import Flask,render_template app = Flask(__name__) @app.route('/') def he ...
- unity小地图制作___按比例尺图标布局
1. 2.这里小地图显示的范围为整个空间区域,而不是单独的相机渲染区域 3. 4. 5. using System.Collections; using System.Collections.Gene ...
- UE4添加植被Foliage Type
在UE4中的地形渲染上不可避免的需要添加植被,而如果采取手动添加StaticMesh植被的方式则会浪费大量的时间精力. UE4提供了一种批量添加地面植被类型的方式Foliage Type.在编辑器内容 ...