Description

  Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各
界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境
中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一
个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一
些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出
征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有
的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的
情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战
斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。

Input

  第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力
和他最痛恨的骑士。

Output

  应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。

Sample Input

3
10 2
20 3
30 1

Sample Output

30

HINT

N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。

Soltuion

这题啊,很奇妙

删去环上的一条边用树的方法解决

如果边是<u,v>的话,枚举u不取,v随意,还是u随意,v不取

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=;
struct edge{int next,to;} e[N];
int n,g[N],M=,w[N],S,T,E;
bool vis[N];
ll f[N][],tmp,ans;
il int read(){
re int hs=;re char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)){
hs=(hs<<)+(hs<<)+c-'';
c=getchar();
}
return hs;
}
il void addedge(int x,int y){
e[++M]=(edge){g[x],y};g[x]=M;
}
il void dfs(re int h,re int fa){
vis[h]=true;
for(int i=g[h];i;i=e[i].next){
if((i^)==fa) continue;
if(vis[e[i].to]){
S=h;T=e[i].to;E=i;continue;
}
dfs(e[i].to,i);
}
}
il void dp(re int h,re int fa){
f[h][]=w[h];f[h][]=;
for(int i=g[h];i;i=e[i].next){
if((i^)==E||i==E) continue;
if((i^)==fa) continue;
dp(e[i].to,i);
f[h][]+=f[e[i].to][];
f[h][]+=max(f[e[i].to][],f[e[i].to][]);
}
}
int main(){
n=read();
for(int i=,x;i<=n;i++){
w[i]=read();x=read();
addedge(x,i);
addedge(i,x);
}
for(int i=;i<=n;i++) if(!vis[i]){
dfs(i,);
dp(S,);
tmp=f[S][];
dp(T,);
tmp=max(tmp,f[T][]);
ans+=tmp;
}
cout<<ans;
return ;
}

bzoj1040 骑士的更多相关文章

  1. BZOJ1040 骑士 【环套树 树形dp】

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 5611  Solved: 2166 [Submit][Stat ...

  2. BZOJ1040 骑士 基环外向树

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6421  Solved: 2544[Submit][Status ...

  3. BZOJ1040:骑士(基环树DP)

    Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...

  4. BZOJ.4316.小C的独立集(仙人掌 DP)

    题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...

  5. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  6. 基环树DP

    基环树DP Page1:问题 啥是基环树?就是在一棵树上增加一条边. Page2:基环树的几种情况 无向 有向:基环外向树,基环内向树. Page3:处理问题的基本方式 1.断环成树 2.分别处理树和 ...

  7. 【bzoj1040】骑士

    [bzoj1040]骑士 题意 给定一个基环森林,求最大独立集. 分析 其实这是一道一年前做过的题. 只是今天在看bzoj1023的时候突然来了几许兴致,回过头来看一看. 如果对于一棵树的最大独立集, ...

  8. 【BZOJ1040】骑士(动态规划)

    [BZOJ1040]骑士(动态规划) 题面 BZOJ 题解 对于每一组厌恶的关系 显然是连边操作 如果是一棵树的话 很显然的树型\(dp\) 但是,现在相当于有很多个基环 也就是在一棵树的基础上再加了 ...

  9. 【BZOJ1040】[ZJOI2008]骑士 树形DP

    [BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...

随机推荐

  1. 树形DP 复习

    树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...

  2. HUE的安装

    HUE: Hadoop User Experience 官网地址:http://gethue.com/ Hue官网无法下载,超时. 使用CDH版本安装. 下载地址: http://archive.cl ...

  3. ccf201703-2学生排队

    问题描述 体育老师小明要将自己班上的学生按顺序排队.他首先让学生按学号从小到大的顺序排成一排,学号小的排在前面,然后进行多次调整.一次调整小明可能让一位同学出队,向前或者向后移动一段距离后再插入队列. ...

  4. go语言之行--数组、切片、map

    一.内置函数 append :追加元素到slice里,返回修改后的slice close :关闭channel delete :从map中删除key对应的value panic  : 用于异常处理,停 ...

  5. 20155209林虹宇Exp4 恶意代码分析

    Exp4 恶意代码分析 系统运行监控 使用schtasks指令监控系统运行 新建一个txt文件,然后将txt文件另存为一个bat格式文件 在bat格式文件里输入以下信息 然后使用管理员权限打开cmd, ...

  6. 2017-2018-2 20155230《网络对抗技术》实验5:MSF基础应用

    基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit 就是运行该模块吧,在msf的模块中配置好各项属性后exploit一下就开始运行使用该模块了 paylo ...

  7. R实战 第六篇:数据变换(aggregate+dplyr)

    数据分析的工作,80%的时间耗费在处理数据上,而数据处理的主要过程可以分为:分离-操作-结合(Split-Apply-Combine),也就是说,首先,把数据根据特定的字段分组,每个分组都是独立的:然 ...

  8. 真机调试傻瓜图文教程(Xcode6.4)

    先准备好99刀,真机调试才带你玩. PS:万能宝十来块钱可以买个资格... Developer Apple上的设置 1.打开https://developer.apple.com/,点击Member ...

  9. TKmath Package gp数据类型

    点,向量,方向 二维:gp_Pnt2d, gp_Vec2d, gp_Dir2d:它们的内部都存储 gp_XY 三维:gp_Pnt, gp_Vec, gp_Dir:它们的内部都存储 gp_XYZ 轴向与 ...

  10. 关于OBS获取显示器黑屏的解决办法

    近来看到许多人说OBS获取显示器源的时候黑屏,下面介绍下相关处理办法. 第一种,先尝试把OBS程序的兼容性设置成Win 7和管理员身份,具体操作: 设置成这样,如果能够获取到显示器,那么问题解决,否则 ...