回归问题

回归问题包含有线性回归和多项式回归

  简单来说,线性回归就是用多元一次方程拟合数据,多项式回归是用多元多次来拟合方程

  在几何意义上看,线性回归拟合出的是直线,平面。多项式拟合出来的是曲线,曲面。

二,线性回归问题

2.1 线性回归

线性回归问题,是监督学习,输出是连续值。(批梯度下降训练参数+平方误差函数做代价函数)

线性问题的求解另一种方法:正规方程。正规方程把参数看成一个整体进行求导。用矩阵一些性质进行简化结果

正规方程:

思路:用矩阵来表示代价函数,求导数为0的时候参数的值,(最后利用矩阵求导结论,求出参数矩阵。)

  1. 用矩阵表示代价函数:
  2. 对代价函数求导化简得到正规方程
  3. 求出Θ。

推到过程:

https://blog.csdn.net/melon__/article/details/80589759

https://blog.csdn.net/jshazhang/article/details/78373218

注意:表达式写成矩阵的形式要注意把符号都表示成列向量,还要区分哪些是向量哪些是矩阵,向量和向量的乘积可以互换位置,但是向量和矩阵不行。

注意矩阵相乘写成表达式的样子是,但是这是一个样本的矩阵表达,m个样本矩阵的表达形式要写成ΘTX,就要用列向量表示样本向量。即:

,其中,写成ΘTX-Y 的形式,或者写成XΘ-Y的形式,这两个表达式里面的X都是样本矩阵,但是是样本矩阵的两种形式,也就是两个X矩阵不一样,前者的X矩阵列向量是一个样本,后者的行向量是一个样本。

2.2 算法需要注意的地方

数据的归一化(特征缩放):为了保证算法下降得更快。

  不管是上神经网络课还是数据挖掘课,老师反复强调了特征的缩放(归一化问题),如果不进行特征的缩放,算法可能就会表现很差,甚至不收敛。特征的缩放方法:Min-Max Scaling和Z-score normalization,

学习率的选取:

通常可以考虑尝试些学习率:0.01,0.03,0.1,0.3,1,3,10

三,多项式回归

对于多项式问题:(多元多次模型)

例如:

线性回归,多项式回归(P2)的更多相关文章

  1. 【udacity】机器学习-回归

    Evernote Export 1.什么是回归? regression 在监督学习中,包括了输入和输出的样本,在此基础上,我们能够通过新的输入来表示结果,映射到输出 输出包含了离散输出和连续输出 2. ...

  2. Machine Learning--week2 多元线性回归、梯度下降改进、特征缩放、均值归一化、多项式回归、正规方程与设计矩阵

    对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \the ...

  3. 线性回归 Linear Regression

    成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差.模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test err ...

  4. R语言多项式回归

    含有x和y这两个变量的线性回归是所有回归分析中最常见的一种:而且,在描述它们关系的时候,也是最有效.最容易假设的一种模型.然而,有些时候,它的实际情况下某些潜在的关系是非常复杂的,不是二元分析所能解决 ...

  5. stanford coursera 机器学习编程作业 exercise 5(正则化线性回归及偏差和方差)

    本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归 ...

  6. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  7. Stanford机器学习笔记-1.线性回归

    Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descent algorit ...

  8. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

  9. (一)线性回归与特征归一化(feature scaling)

    线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...

随机推荐

  1. Springboot学习01- 配置文件加载优先顺序和本地配置加载

    Springboot学习01-配置文件加载优先顺序和本地配置加载 1-项目内部配置文件加载优先顺序 spring boot 启动会扫描以下位置的application.properties或者appl ...

  2. This system is not registered with an entitlement server. You can use subscription-manager to register.

    错误信息 [root@bogon apache-tomcat-]# yum install gcc-c++ Loaded plugins: product-id, search-disabled-re ...

  3. [Java]Spring Ioc讲解,不怕你不懂

    原文地址 引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明式事务等功能在此基础上开花结果.但是IoC这个重要的概念却比较晦涩隐讳,不容易让人望文生义 ...

  4. iOS 网络操作与AFNetworking

    一.早前的几个网络框架 1.ASI框架: HTTP终结者.很牛, 但是有BUG, 已经停止更新. 2.MKNetworkKit (印度人写的). 3.AFN一直还在更新. AFNetworking的出 ...

  5. python 基本数据类型 之 字符串

    字符串数据出现的意义 掌握字符串的定义和特性 能熟练掌握字符串常用操作,并了解其他工厂方法 字符串的定义和创建 字符串是一个有序的字符集合,用于存储和表示基本的文本信息,  用引号“          ...

  6. Jenkins构建.net项目

    一.环境搭建 1.安装所需软件 Jenkins\JDK\GIT\VS\IIS\nginx(可选) 1.1 安装iis服务: 控制面板—>程序和功能—>启用或关闭windows功能,勾选所有 ...

  7. JAVA课堂动手动脑实验--方法的重载定义,组合数的递归算法

    1. 请看以下代码,你发现了有什么特殊之处吗? 答:此程序中的两个方法虽然方法名一样,但是参数的数据类型不同: 这是方法的重载,方法的重载需要满足的条件: 1)方法名相同: 2)参数类型不同,参数个数 ...

  8. c++计时

    一.clock#include<ctime>clock_t start,end;start=clock();end=clock();cout<<start<<',' ...

  9. javascript 高级程序设计 三

    Sorry,前两张介绍的主题还是JavaScript,而第一章介绍了JavaScript和ECMAScript区别,所以前两章介绍的主题应该改为ECMAScript,但是 标题就不改了因为现在人们习惯 ...

  10. (O)JS高阶函数应用——函数节流

    在一些函数需被频繁调用的场景,如:window.onresize.mousemove.scroll滚动事件.上传进度等等,操作频繁导致性能消耗过高,而造成浏览器卡顿现象,我们可以通过函数节流的方式解决 ...