【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2468 Solved: 868Description
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。
Input
第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。
Output
输出满足条件的树有多少棵。
Sample Input
4
2 1 2 1Sample Output
2HINT
Source
【分析】
无根树的表示法用prufer数列。【长姿势】
将树转化成Prufer数列的方法
一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。例子
Prufer数列以上面的树为例子,首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}
将Prufer数列转化成树的方法
设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。例子仍为上面的树,Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 160
#define LL long long int d[Maxn],cnt[Maxn]; void cal(int x,int y)
{
for(int i=;i*i<=x;i++) if(x%i==)
{
while(x%i==) cnt[i]+=y,x/=i;
}
if(x!=) cnt[x]+=y;
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&d[i]);
if(n==)
{
if(d[]==) printf("1\n");
else printf("0\n");
}
else
{
int sum=;
for(int i=;i<=n;i++)
{
if(d[i]==||d[i]>=n) {printf("0\n");return ;}
sum+=(--d[i]);
}
if(sum!=n-) printf("0\n");
else
{
for(int i=;i<=n;i++) cnt[i]=;
for(int i=;i<=n-;i++) cal(i,);
for(int i=;i<=n;i++) for(int j=;j<=d[i];j++) cal(j,-);
LL ans=;
for(int i=;i<=n;i++) while(cnt[i]--) ans=1LL*ans*i;
printf("%lld\n",ans);
}
}
return ;
}
【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)的更多相关文章
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- 树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- 【BZOJ1211】【HNOI2004】树的计数 prufer序列
题目描述 给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树. 无解输出\(0\).保证答案不超过\({10}^{17}\). \(n\leq 150\) 题解 考虑prufer序 ...
- 无根树的计数——prufer序列
参考博客https://www.cnblogs.com/dirge/p/5503289.html (1)prufer数列是一种无根树的编码表示,类似于hash. 一棵n个节点带编号的无根树,对应唯一串 ...
- 【XSY1295】calc n个点n条边无向连通图计数 prufer序列
题目大意 求\(n\)个点\(n\)条边的无向连通图的个数 \(n\leq 5000\) 题解 显然是一个环上有很多外向树. 首先有一个东西:\(n\)个点选\(k\)个点作为树的根的生成森林个数为: ...
- prufer序列计数的一些结论
\(prufer\)序列和完全图的生成树一一对应(考虑构造) 完全图的生成树个数为\(n^{n - 2}\) 满足第\(i\)个点的度数为\(d_i\)的生成树为\(\frac{n!}{\prod ( ...
随机推荐
- NodeJS API Process全局对象
Process 全局对象,可以在代码中的任何位置访问此对象,使用process对象可以截获进程的异常.退出等事件,也可以获取进程的当前目录.环境变量.内存占用等信息,还可以执行进程退出.工作目录切换等 ...
- .net 里面打不出来ConfigurationManager
ConfigurationManager 这个东东是读取配置文件时需要的. 首先要引用命名空间里面 using System.Configuration; 其次呢,在解决方案的引用里,单机右键进行添加
- vim文本删除方法 Linux
1,先打开某个文件: vim filename 2,转到文件结尾 在命令模式输入 G 3,转到10行 在命令模式输入 10G 4,删除所有内容:先用G 转到文件尾,然后使用下面命令: :1, .d ...
- Java入门系列(六)方法
方法返回多个值 使用集合类 /** * 方法1:使用集合类 (Map以外的集合类也可以随意使用) * 目标:返回一个数组的最大值和最小值 */ public Map<String, Intege ...
- 怎样提高WebService的性能
服务器端WebService程序: using System.Runtime.Serialization.Formatters.Binary; using System.IO; using Syste ...
- 【转载】RESTful API 设计指南
作者: 阮一峰 日期: 2014年5月22日 网络应用程序,分为前端和后端两个部分.当前的发展趋势,就是前端设备层出不穷(手机.平板.桌面电脑.其他专用设备......). 因此,必须有一种统一的机制 ...
- iOS 中nil,Nil,NULL,NSNull的区别
类与对象的概念 类是对同一类事物高度的抽象,类中定义了这一类对象所应具有的静态属性(属性)和动态属性(方法). 对象是类的一个实例,是一个具体的事物. 类与对象是抽象与具体的关系. 类其实就是一种数据 ...
- HDU 2086 A=? 数学题
题目描述:有一个公式,Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).,如果给出A0, An+1, 和 C1, C2, .....Cn要你计算出A1是多 ...
- 第8月第12天 python json.dumps danmu
1.json.dumps return JsonResponse({ 'status': WechatMessage.POST_METHOD_REQUIRED[1], 'status_code': W ...
- 记webpack下引入vue的方法(非.vue文件方式)
直接script引入下载静态的vue.js文件则最后用copy-webpack-plugin复制到一样的目录即可 使用npm安装的vue无法直接用 import vue from "vue& ...