Logistic Regression – Geometric Intuition

Everybody who has taken a machine learning course probably knows the geometric intuition behind a support vector machine (SVM, great book): A SVM is a large margin classifier. In other words, it maximizes the geometric distance between the decision boundary and the classes of samples. Often you’ll find plots similar to this one:

But what about logistic regression? What is the geometric intuition behind it and how does it compare to linear SVMs? Let’s find out.

Geometric intuition behind logistic regression

First, a quick reminder about the definition of the logistic function, given features:

With that out of the way, let’s dive into the geometric aspects of logistic regression, starting with a toy example of only one feature:

The blue samples of our feature data belong to class , while the red dots are supposed to get assigned to . As we can see in the figure above, our data is fully separable and the logistic regression is able to demonstrate this property. From a geometric perspective, the algorithm essentially adds a new dimension for our dependent variable and fits a logistic function  to the arising two-dimensional data in such a way that it separates the samples as good as possible within the range of . Once we have such a fitted curve, the usual method of prediction is to assign to everything and vice versa.

When thinking about logistic regression, I usually have its tight connection to linear regression somewhere in the back of my head (no surprise, both have “regression” as part of their names). Therefore, I was wondering what the line would look like and added it to the plot. As we can easily see, differs significantly from the potential result of a linear regression for the given input data. While that was to be expected, I think it’s still nice to confirm it visually.

Note two details of the plot: For one, the logistic curve is not as steep as you might expect at first. This is due to the use of regularization, which logistic regression basically can’t live without. Second, for and not, as my intuition initially suggested, for . Not sure if this is particularly helpful, but I find it interesting nonetheless.

So far, so good. But what happens when we introduce an additional dimension? Let’s have a look at such a two feature scenario (feel free to pinch and zoom the plot):

What we see is the surface of the fitted logistic function  for a classification task with two features. This time, instead of transforming a line to a curve, the equivalent happened for a plane. To make it easier to understand how to carry out predictions given such a model, the following plot visualizes the data points projected onto the surface of the logistic regression function:

Now we can again make decisions for our class based on a threshold , which usually is :

So much about the geometric intuition behind logistic regression. Let’s see how that compares to linear SVMs.

Comparison of logistic regression to linear SVM

First of all, notice that with logistic regression we can use the value of a sample as a probability estimate for . The responsive 3D-plots above created with the help of plotly’s fantastic library illustrate this property of logistic regression very well. I have yet to come across a real-world classification task where such probability estimates are not at least somewhat useful. Alas, SVMs (in their original version) aren’t able to provide them. Due to the way the model works, all it can tell you is whether a sample belongs to class  or not.

I think at this point the most effective way of comparing logistic regression to linear SVM geometrically, is to add the decision boundary of logistic regression to the initial figure of the post. To make this happen, we need to project the decision boundary of the three-dimensional plot above onto the two-dimensional feature space. Doing so, we end up with the following figure:

As we can see, the logistic regression does not follow the same large margin characteristic as a linear SVM. I’ll leave it to you to decide which is the better fit for the given data.

If you’d like to know further differences between logistic regression and linear SVMs aside from the geometrically motivated ones mentioned here, have a look at the excellent answers on quora.

The code for generating the plots of this post can be found on github.

Logistic Regression – Geometric Intuition的更多相关文章

  1. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  2. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  3. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

  4. logistic regression与SVM

    Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只 ...

  5. Logistic Regression - Formula Deduction

    Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma( ...

  6. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  7. [OpenCV] Samples 06: [ML] logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  8. Stanford机器学习笔记-2.Logistic Regression

    Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2.2.1 Interpretin ...

  9. Logistic Regression vs Decision Trees vs SVM: Part II

    This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...

随机推荐

  1. 从浏览器输入URL到显示页面到底发生了什么?

    首先说明一下,当系统本地缓存了你所请求的资源时,会直接把缓存内容解析并显示,而不会进行以下的一系列行为. 一.DNS域名解析 至今的计算机数量可谓是数不胜数,而它们的唯一识别身份就是ip地址.我们常说 ...

  2. Jenkins+Maven+SVN+Nexus自动化部署代码实例

    本文接着上篇安装jenkins,安装相关插件,使用我们公司持续集成的测试环境实例进行演示 ========= 完美的分割线 ========== 1.安装jenkins的maven插件 如果要使用je ...

  3. 机器学习英雄访谈录之 DL 自由职业者:Tuatini Godard

    目录 机器学习英雄访谈录之 DL 自由职业者:Tuatini Godard 正文 对我的启发 机器学习英雄访谈录之 DL 自由职业者:Tuatini Godard Sanyam Bhutani 是 M ...

  4. python 游戏(猜单词Hangman)

    1.游戏思路和流程图 实现功能:随机一个单词让玩家猜测(后续难度实现修改为成语填空,成语必须要有提示,可修改猜的次数,增加连续猜成语,难度系数随着次数的增加而增加) 游戏流程图 2. 单词库和模块 i ...

  5. Vue 入门之 Vuex 实战

    Vue 入门之 Vuex 实战 引言 Vue 组件化做的确实非常彻底,它独有的 vue 单文件组件也是做的非常有特色.组件化的同时带来的是:组件之间的数据共享和通信的难题. 尤其 Vue 组件设计的就 ...

  6. PAT甲题题解-1031. Hello World for U (20)-字符串处理,水

    #include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...

  7. Intellij IDEA 文件修改提示星号

    https://www.cnblogs.com/zheting/p/7594073.html

  8. Spring sprint @ ninth day

    时间 日期 地点 工作 20:05 5.20 九实 集成网络助手项目 遇到的困难:集成遇到,画了好久的rc文件,编译不了.rc文件也不能复制,还得重画.郁闷!!!

  9. VS2013安装及测试

    一.Visual Studio的安装 首先是Visual Studio英文版的安装,安装完成后,为了用的时候方便,我从官网下载Visual Studio 2013的语言包并安装. 二.进行单元测试. ...

  10. java 读写 excle 完整版

    pom.xml <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</a ...