原题

就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数)

首先有引理(然而并没有证明):

\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)

带到原式里得到:

\(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)

利用\(\mu\)函数的性质把方括号换掉:

\(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{d|gcd(x,y)}\mu(d)\)

交换枚举主体:

\(ans=\sum\limits_{x=1}\sum\limits_{y=1}\sum\limits_{i=1}^{\lfloor\frac{N}{x}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{M}{y}\rfloor}\sum\limits_{d|gcd(x,y)}\mu(d)\)

进而得到:

\(ans=\sum\limits_{x=1}\sum\limits_{y=1}\lfloor\frac{N}{x}\rfloor\lfloor\frac{M}{y}\rfloor\sum\limits_{d|gcd(x,y)}\mu(d)\)

首先枚举\(d\):

\(ans=\sum\limits_{d=1}^{min\{N,M\}}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{N}{d}\rfloor}\sum\limits_{y=1}^{\lfloor\frac{M}{d}\rfloor}\lfloor\frac{N}{x}\rfloor\lfloor\frac{M}{y}\rfloor\)

后面的顺序是无所谓的,交换一下:

\(ans=\sum\limits_{d=1}^{min\{N,M\}}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{N}{d}\rfloor}\lfloor\frac{N}{x}\rfloor\sum\limits_{y=1}^{\lfloor\frac{M}{d}\rfloor}\lfloor\frac{M}{y}\rfloor\)

然后发现只要预处理一下后面的东西就可以整除分块了

贴一下代码:

#include <bits/stdc++.h>

using namespace std;

#define N 50000

int cnt, prime[N+5], mu[N+5], sum[N+5], notprime[N+5];
int b[N+5]; void init()
{
mu[1] = sum[1] = notprime[1] = 1;
for(int i = 2; i <= N; ++i)
{
if(!notprime[i]) prime[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i*prime[j] <= N; ++j)
{
notprime[i*prime[j]] = 1;
if(i%prime[j] == 0)
{
mu[i*prime[j]] = 0;
break;
}
mu[i*prime[j]] = mu[i]*-1;
}
sum[i] = sum[i-1]+mu[i];
}
for(int i = 1; i <= N; ++i)
{
for(int l = 1, r; l <= i; l = r+1)
{
r = min(i/(i/l), i);
b[i] += (r-l+1)*(i/l);
}
}
} int T, n, m; int main()
{
scanf("%d", &T);
init();
while(T--)
{
scanf("%d%d", &n, &m);
long long ans = 0;
if(n > m) swap(n, m);
for(int l = 1, r; l <= n; l = r+1)
{
r = min(min(n/(n/l), m/(m/l)), n);
ans += 1LL*(sum[r]-sum[l-1])*b[n/l]*b[m/l];
}
printf("%lld\n", ans);
}
return 0;
}

洛谷P3327 约数个数和 结论+莫比乌斯反演的更多相关文章

  1. 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)

    题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...

  2. 【BZOJ3994】约数个数和(莫比乌斯反演)

    [BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...

  3. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  4. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  5. 洛谷$P$3327 约数个数和 $[SDOI2015]$ 莫比乌斯反演

    正解:莫比乌斯反演 解题报告: 传送门! 先考虑证明一个结论,$d_{i\cdot j}=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]$ 看起来就很对的样子,但还是证下趴$QwQ ...

  6. P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)

    P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...

  7. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  8. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  9. BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)

    Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...

随机推荐

  1. VSCode瞎折腾记

    搬到小机房后终于能用VSCode啦(没错以前的系统是xp) 但是这东西比Dev难搞多了qwq,简单记一下自己的DIY历程吧(不然全搞炸就凉了) 设置语言为中文 可以直接下载插件 让VSCode支持编译 ...

  2. Gulp 前端优化

    使用方法: 下载 node.js , https://nodejs.org/en/,并安装 msi 一下命令都属于 dos 命令 node -v,npm -v,检验是否下载成功(出现版本号) 将 np ...

  3. JS之BOMBOM!

    什么是BOM? bom即browser object model 也就是浏览器对象模型,BOM由多个对象组成,其中代表浏览器窗口的window对象是BOM的顶层对象,其他对象都是该对象的子对象. 顶层 ...

  4. dede首页、列表页调用非缩略图

    在include/extend.func.php末尾添加 function firstimg($str_pic) { $str_sub=substr($str_pic,0,-7).strrchr($s ...

  5. C盘突然报警,空间不足,显示成红色了

    1.清理系统垃圾文件 将如下命令保存到一个bat文件中,执行,删除垃圾文件 @echo off net share c$ /del net share d$ /del net share e$ /de ...

  6. Websocket-Sharp获取客户端IP地址和端口号

    //OnOpen事件 protected override void OnOpen() { string IPAddress = base.Sessions.Sessions.First().Cont ...

  7. Jenkins实现简单的CI功能

    步骤一:安装JDK.Tomcat,小儿科的东西不在此详细描述 步骤二:下载安装Jenkins下载链接:https://jenkins.io/download/ 步骤三:将下载的jenkins.war部 ...

  8. c/c++ 网络编程 read,write函数深入理解

    read,write函数深入理解 1,服务端的write函数,可以指定发送数据的长度(第三个参数length) write(connfd, &buff[i], length); 2,客户端的r ...

  9. linux杀毒软件ClamAV的安装使用

    1.安装依赖环境 yum install -y zlib openssl-devel yum groupinstall -y "Development Tools" apt ins ...

  10. python学习——读取染色体长度(一、简化问题)

    # 读取fasta # 解析每条序列的长度 chr1_len = 10 chr2_len = 20 chr3_len = 30 chr4_len = 40 chr5_len = 50 # 求和 tot ...