【BZOJ3295】动态逆序对(线段树,树状数组)
【BZOJ3295】动态逆序对(线段树,树状数组)
题面
Description
对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。
Input
输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。
Output
输出包含m行,依次为删除每个元素之前,逆序对的个数。
Sample Input
5 4
1
5
3
4
2
5
1
4
2
Sample Output
5
2
2
1
题解
显然可以CDQ分治做(我等下就写)
这题神似Dynamic Ranking
其实,有些人说这个叫做带修改的主席树
可是,我怎么看都觉得这是线段树动态开点呀。。。
无所谓了
智商不够数据结构来补就好啦
空间大概是\(nlog^2\)的????
玄学空间
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 150000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Node
{
int ls,rs;
int v;
}t[MAX<<6];
int tot,rt[MAX],sum;
long long ans;
int n,m;
int c[MAX],a[MAX],b[MAX];
int lowbit(int x){return x&(-x);}
void Add(int x,int w){while(x<=n)c[x]+=w,x+=lowbit(x);}
int getsum(int x){int ret=0;while(x)ret+=c[x],x-=lowbit(x);return ret;}
void Modify(int &now,int l,int r,int pos,int w)
{
if(!now)now=++tot;
t[now].v+=w;
if(l==r)return;
int mid=(l+r)>>1;
if(pos<=mid)Modify(t[now].ls,l,mid,pos,w);
else Modify(t[now].rs,mid+1,r,pos,w);
}
int L,R;
int Query(int now,int l,int r)
{
if(!now)return 0;
if(L<=l&&r<=R)return t[now].v;
int mid=(l+r)>>1,ret=0;
if(L<=mid)ret+=Query(t[now].ls,l,mid);
if(R>mid)ret+=Query(t[now].rs,mid+1,r);
return ret;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
{
a[i]=read(),b[a[i]]=i;
ans+=getsum(n)-getsum(a[i]);
Add(a[i],1);
}
for(int i=1;i<=n;++i)
for(int x=i;x<=n;x+=lowbit(x))
Modify(rt[x],1,n,a[i],1);
while(m--)
{
printf("%lld\n",ans);
int p=b[read()];
for(int i=p-1;i;i-=lowbit(i))
L=a[p]+1,R=n,ans-=Query(rt[i],1,n);
for(int i=n;i;i-=lowbit(i))
L=1,R=a[p]-1,ans-=Query(rt[i],1,n);
for(int i=p;i;i-=lowbit(i))
L=1,R=a[p]-1,ans+=Query(rt[i],1,n);
for(int i=p;i<=n;i+=lowbit(i))
Modify(rt[i],1,n,a[p],-1);
}
return 0;
}
【BZOJ3295】动态逆序对(线段树,树状数组)的更多相关文章
- BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组
BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一 ...
- BZOJ3295 动态逆序对(树状数组套线段树)
[Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6058 Solved: 2117[Submit][Status][D ...
- bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)
3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...
- [bzoj3295][Cqoi2011]动态逆序对_主席树
动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- 【bzoj3295】[Cqoi2011]动态逆序对 线段树套SBT
题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...
- bzoj3295 动态逆序对
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- BZOJ3295/Luogu3157 [CQOI2011]动态逆序对 (CDQ or 树套树 )
/* Dear friend, wanna learn CDQ? As a surprice, this code is totally wrong. You may ask, then why yo ...
- BZOJ3295动态逆序对
一道比较傻的CDQ分治 CDQ: 主要用于解决三位偏序的问题 #include<cstdio> #include<cctype> #include<algorithm&g ...
- bzoj3295 洛谷P3157、1393 动态逆序对——树套树
题目:bzoj3295 https://www.lydsy.com/JudgeOnline/problem.php?id=3295 洛谷 P3157(同一道题) https://www.luogu.o ...
随机推荐
- MySQL开启binlog并且保存7天有效数据
开启binlog日志(在[mysqld]下修改或添加如下配置): server-id=1 log-bin=mysql-bin binlog_format=MIXED binlog日志模式 Mysql复 ...
- 分布式集群下的Session存储方式窥探
传统的应用服务器,自身实现的session管理是大多是基于单机的,对于大型分布式网站来说,支撑其业务的远远不止一台服务器,而是一个分布式集群,请求在不同的服务器之间跳转.那么,如何保持服务器之前的se ...
- sass 变量
1.使用变量 $符号标识变量 变量名中 中划线和下划线互通(不包括sass中纯 css 部分) 变量值 css 属性标准值 包括以空格 和 逗号 , 分开的多个属性值 变量可以定义在规则块之外
- 【netty这点事儿】ByteBuf 的使用模式
堆缓冲区 最常用的 ByteBuf 模式是将数据存储在 JVM 的堆空间中. 这种模式被称为支撑数组(backing array), 它能在没有使用池化的情况下提供快速的分配和释放. 直接缓冲区 直接 ...
- C语言链表的建立、插入和删除
先看下向链表中插入节点 下面这个是删除链表节点
- hihoCoder 1015 KMP算法
题意:经典字符串匹配算法.给定原串和模式串,求模式串在原串中出现的次数.算法讲解 AC代码 #include <cstdio> #include <cmath> #includ ...
- rem是如何自适应的
原文链接:http://caibaojian.com/web-app-rem.html 摘要:rem是相对于根元素<html>,这样就意味着,我们只需要在根元素确定一个px字号,则可以来算 ...
- DataTable筛选某列最大值
dt.Compute("max(列名)",""); Compute函数的参数就两个:Expression,和Filter. Expresstion是计算表达式, ...
- Git 版本退回commit
有的时候错误提交了commit,需要版本退回. 先用git log查看一下节点版本号commit_id $ git log 再用git reset退回 $ git reset -soft commit ...
- 为什么说DOM操作很慢
转自http://www.cnblogs.com/yuzhongwusan/articles/5275933.html 一直都听说DOM很慢,要尽量少的去操作DOM,于是就想进一步去探究下为什么大 ...